scholarly journals Chemosensitive Thin Films Active to Ammonia Vapours

Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 2948
Author(s):  
Agnieszka Brochocka ◽  
Aleksandra Nowak ◽  
Hanna Zajączkowska ◽  
Marta Sieradzka

The paper presents various dispersive systems developed for sensing toxic substance—ammonia. Polycarbonate dissolved in methylene chloride was used as a polymer matrix, which was enriched with: multi-walled carbon nanotubes (MWCNs), reduced graphene oxide (rGO) and conductive polymer (polyaniline—PANi). Dispersive systems were applied to the prefabricated substrates with comb electrodes by two methods: spraying and drop-casting, forming an active chemosensitive to ammonia vapours films. The spraying method involved applying the dispersion to the substrate by an aerograph for a specific time, whereas drop-casting involves depositing of the produced dispersive systems using a precision automatic pipette. The electrical responses of the obtained films were examined for nominal concentrations of ammonia vapours. Different types of dispersions with various composition were tested, the relationships between individual compounds and ammonia were analysed and the most promising dispersions were selected. Sensor containing rGO deposited by drop-casting revealed the highest change in the resistance (14.21%).

2008 ◽  
Vol 47-50 ◽  
pp. 1478-1481 ◽  
Author(s):  
Hyoung Bong Bae ◽  
Jung Ho Ryu ◽  
Bok Soo Byun ◽  
Seong Ho Choi ◽  
Sang Ho Kim ◽  
...  

Pt-Ru@CP-MWNT catalysts were prepared by radiolytic deposition of Pt-Ru nanoparticles on conduction polymer (CP) coated multi walled carbon nanotubes (MWNTs) surfce. Three different types of conducting polymers; polypyrrole(PPy), polyaniline(PANI), and polythiophene (PTh), were coated on the MWNTs surface by in situ polymerization. Then Pt-Ru nanoparticles were deposited onto CP-MWNTs composite by the reduction of metal ions using gamma-irradiation to obtain Pt-Ru@CP-MWNT catalysts. The size, morphology and composition of Pt-Ru@CP-MWNT catalysts were characterized by SEM, TEM and elemental analysis. The catalytic efficiency of Pt-Ru@CP-MWNT catalyst was examined for CO stripping. Pt-Ru@PPy-MWNT and Pt-Ru@PANI-MWNT electrodes show enhanced activity for electrooxidation of CO and methanol over Pt-Ru@PTh-MWNT catalyst.


2012 ◽  
Vol 729 ◽  
pp. 260-265
Author(s):  
M. Olah ◽  
Ferenc Ronkay

Investigation of conductive polymer composites have been carried out using polypropylene (PP) and polyphenylene sulfonate (PPS) for matrix compound and graphite, carbon black and multi walled carbon nanotubes (MWCNT) for fillers. The comparison of these matrix materials with respect to the resulting electrical conductivity were investigated in depth. The effect of quantity of nanotubes and their dispersion on electrical conductivity and formability was also investigated. It has been found that PPS composites show much higher conductivity, however the high temperature needed for forming, and high viscosity in case of high filler content (50 wt% <) make the processing difficult, therefore the injection molding of the resulting material is currently not possible. Furthermore in contradiction to the literature the addition of MWCNT did not raise the conductivity significantly, therefore the focus have been kept on filler content instead.


2013 ◽  
Vol 13 (2) ◽  
pp. 103-108 ◽  
Author(s):  
Sharmila Pradhan ◽  
Ralf Lach ◽  
Wolfgang Grellmann ◽  
Rameshwar Adhikari

The effect of different types of fillers on morphology and mechanical properties of polymer nanocomposites has been investigated using ethylene-1–octene copolymer (EOC), a polyolefin based elastomer, as matrix and various nanofillers {such as multi-walled carbon nanotubes (MWCNT), layered silicate (LS) and boehmite (OS2)}. The morphological structures were studied by scanning electron microscopy (SEM) while the mechanical properties were characterized by tensile testing and microindentation hardness measurements. It has been shown that the nature of the nanofiller may have significant influence on the mechanical properties of the samples. Among the nanocomposites studied so far, the MWCNT filled samples showed the highest reinforcing effect followed by layered silicate. The least reinforcing effect was obtained for the samples filled with boehmite nanoparticles. Nepal Journal of Science and Technology Vol. 13, No. 2 (2012) 103-108 DOI: http://dx.doi.org/10.3126/njst.v13i2.7721


Soft Matter ◽  
2013 ◽  
Vol 9 (43) ◽  
pp. 10343 ◽  
Author(s):  
Deepalekshmi Ponnamma ◽  
Kishor Kumar Sadasivuni ◽  
Michael Strankowski ◽  
Qipeng Guo ◽  
Sabu Thomas

2020 ◽  
Vol 3 (3) ◽  
pp. 93
Author(s):  
Chandramani Upadhyay ◽  
Hanzala Shahzad ◽  
Mehreen Javid ◽  
Bhumika Soni ◽  
Tameem Ahmad ◽  
...  

2D materials like Graphene and its composite has emerged as most valuable and major concern because of their peculiar properties in field of nanotechnology in past few decades. Herein, we report the effective technique for the synthesis of functionalized r-GO/MWCNTs nanocomposite using probe sonication. The synthesized samples were tested via XRD, FESEM, FTIR and Raman Spectroscopy. X-ray diffraction technique was used for the structural analysis of the samples which revealed that most prominent peak was observed around 2θ~26°. Surface morphology of the samples were studied via FESEM, which revealed that r-GO layers were wrapped around the MWCNTs. Raman spectra were recorded for the determination of quality of r-Go and MWCNT via the position and intensity of D and G band. The various functionalities present on the samples were identified via FTIR spectra.


2019 ◽  
Vol 11 (1) ◽  
pp. 168781401882288 ◽  
Author(s):  
Yafei Sun ◽  
Min Chen ◽  
Peiwei Gao ◽  
Tianshu Zhou ◽  
Hongwei Liu ◽  
...  

In this article, reduced graphene oxide/Ni/multi-walled carbon nanotubes/Fe3O4 filled paste is synthesized with the aim of developing a novel shielding material. To do so, nano-dispersion presenting homogeneous distribution is made by ultrasonic dispersing technology. Next, the effects of nano-absorbent content on the fluidity, mechanical strength, pore structure, resistivity, and absorbing reflectivity of paste are studied. At the end, the microstructure of composite is uncovered by scanning electron microscopy, Fourier transformer infrared, X-ray diffraction images as well as the pore size distribution and absorbing reflectivity are revealed. The results indicate that a small load of reduced graphene oxide and other nano-absorbents can significantly reduce the fluidity and resistivity of paste, but its pore structure is improved so that its mechanical properties are increased. Scanning electron microscopy images indicate that reduced graphene oxide promotes the increasing and thickening of the cement hydration products as well as the growth of a large number of flower-like and compact bulk crystals. Furthermore, the minimum reflectivity of −10.6 dB is obtained in the range of 2–18 GHz while the effective bandwidth of 16 GHz is obtained when reflectivity is less than −5 dB. This research provides a new pathway for the preparation of monolayer cement–based absorber.


Sign in / Sign up

Export Citation Format

Share Document