scholarly journals Automated Non-Contact Respiratory Rate Monitoring of Neonates Based on Synchronous Evaluation of a 3D Time-of-Flight Camera and a Microwave Interferometric Radar Sensor

Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 2959
Author(s):  
Johanna Gleichauf ◽  
Sven Herrmann ◽  
Lukas Hennemann ◽  
Hannes Krauss ◽  
Janina Nitschke ◽  
...  

This paper introduces an automatic non-contact monitoring method based on the synchronous evaluation of a 3D time-of-flight (ToF) camera and a microwave interferometric radar sensor for measuring the respiratory rate of neonates. The current monitoring on the Neonatal Intensive Care Unit (NICU) has several issues which can cause pressure marks, skin irritations and eczema. To minimize these risks, a non-contact system made up of a 3D time-of-flight camera and a microwave interferometric radar sensor is presented. The 3D time-of-flight camera delivers 3D point clouds which can be used to calculate the change in distance of the moving chest and from it the respiratory rate. The disadvantage of the ToF camera is that the heartbeat cannot be determined. The microwave interferometric radar sensor determines the change in displacement caused by the respiration and is even capable of measuring the small superimposed movements due to the heartbeat. The radar sensor is very sensitive towards movement artifacts due to, e.g., the baby moving its arms. To allow a robust vital parameter detection the data of both sensors was evaluated synchronously. In this publication, we focus on the first step: determining the respiratory rate. After all processing steps, the respiratory rate determined by the radar sensor was compared to the value received from the 3D time-of-flight camera. The method was validated against our gold standard: a self-developed neonatal simulation system which can simulate different breathing patterns. In this paper, we show that we are the first to determine the respiratory rate by evaluating the data of an interferometric microwave radar sensor and a ToF camera synchronously. Our system delivers very precise breaths per minute (BPM) values within the norm range of 20–60 BPM with a maximum difference of 3 BPM (for the ToF camera itself at 30 BPM in normal mode). Especially in lower respiratory rate regions, i.e., 5 and 10 BPM, the synchronous evaluation is required to compensate the drawbacks of the ToF camera. In the norm range, the ToF camera performs slightly better than the radar sensor.

Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 664
Author(s):  
Zhihong Ma ◽  
Dawei Sun ◽  
Haixia Xu ◽  
Yueming Zhu ◽  
Yong He ◽  
...  

Three-dimensional (3D) structure is an important morphological trait of plants for describing their growth and biotic/abiotic stress responses. Various methods have been developed for obtaining 3D plant data, but the data quality and equipment costs are the main factors limiting their development. Here, we propose a method to improve the quality of 3D plant data using the time-of-flight (TOF) camera Kinect V2. A K-dimension (k-d) tree was applied to spatial topological relationships for searching points. Background noise points were then removed with a minimum oriented bounding box (MOBB) with a pass-through filter, while outliers and flying pixel points were removed based on viewpoints and surface normals. After being smoothed with the bilateral filter, the 3D plant data were registered and meshed. We adjusted the mesh patches to eliminate layered points. The results showed that the patches were closer. The average distance between the patches was 1.88 × 10−3 m, and the average angle was 17.64°, which were 54.97% and 48.33% of those values before optimization. The proposed method performed better in reducing noise and the local layered-points phenomenon, and it could help to more accurately determine 3D structure parameters from point clouds and mesh models.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1228
Author(s):  
Ting On Chan ◽  
Linyuan Xia ◽  
Yimin Chen ◽  
Wei Lang ◽  
Tingting Chen ◽  
...  

Ancient pagodas are usually parts of hot tourist spots in many oriental countries due to their unique historical backgrounds. They are usually polygonal structures comprised by multiple floors, which are separated by eaves. In this paper, we propose a new method to investigate both the rotational and reflectional symmetry of such polygonal pagodas through developing novel geometric models to fit to the 3D point clouds obtained from photogrammetric reconstruction. The geometric model consists of multiple polygonal pyramid/prism models but has a common central axis. The method was verified by four datasets collected by an unmanned aerial vehicle (UAV) and a hand-held digital camera. The results indicate that the models fit accurately to the pagodas’ point clouds. The symmetry was realized by rotating and reflecting the pagodas’ point clouds after a complete leveling of the point cloud was achieved using the estimated central axes. The results show that there are RMSEs of 5.04 cm and 5.20 cm deviated from the perfect (theoretical) rotational and reflectional symmetries, respectively. This concludes that the examined pagodas are highly symmetric, both rotationally and reflectionally. The concept presented in the paper not only work for polygonal pagodas, but it can also be readily transformed and implemented for other applications for other pagoda-like objects such as transmission towers.


2021 ◽  
Vol 5 (1) ◽  
pp. 59
Author(s):  
Gaël Kermarrec ◽  
Niklas Schild ◽  
Jan Hartmann

Terrestrial laser scanners (TLS) capture a large number of 3D points rapidly, with high precision and spatial resolution. These scanners are used for applications as diverse as modeling architectural or engineering structures, but also high-resolution mapping of terrain. The noise of the observations cannot be assumed to be strictly corresponding to white noise: besides being heteroscedastic, correlations between observations are likely to appear due to the high scanning rate. Unfortunately, if the variance can sometimes be modeled based on physical or empirical considerations, the latter are more often neglected. Trustworthy knowledge is, however, mandatory to avoid the overestimation of the precision of the point cloud and, potentially, the non-detection of deformation between scans recorded at different epochs using statistical testing strategies. The TLS point clouds can be approximated with parametric surfaces, such as planes, using the Gauss–Helmert model, or the newly introduced T-splines surfaces. In both cases, the goal is to minimize the squared distance between the observations and the approximated surfaces in order to estimate parameters, such as normal vector or control points. In this contribution, we will show how the residuals of the surface approximation can be used to derive the correlation structure of the noise of the observations. We will estimate the correlation parameters using the Whittle maximum likelihood and use comparable simulations and real data to validate our methodology. Using the least-squares adjustment as a “filter of the geometry” paves the way for the determination of a correlation model for many sensors recording 3D point clouds.


2021 ◽  
Vol 42 (7) ◽  
pp. 2463-2484
Author(s):  
Kexin Zhu ◽  
Xiaodan Ma ◽  
Haiou Guan ◽  
Jiarui Feng ◽  
Zhichao Zhang ◽  
...  

2021 ◽  
Vol 42 (15) ◽  
pp. 5721-5742
Author(s):  
Zhichao Zhang ◽  
Xiaodan Ma ◽  
Haiou Guan ◽  
Kexin Zhu ◽  
Jiarui Feng ◽  
...  

2021 ◽  
Vol 10 (5) ◽  
pp. 345
Author(s):  
Konstantinos Chaidas ◽  
George Tataris ◽  
Nikolaos Soulakellis

In a post-earthquake scenario, the semantic enrichment of 3D building models with seismic damage is crucial from the perspective of disaster management. This paper aims to present the methodology and the results for the Level of Detail 3 (LOD3) building modelling (after an earthquake) with the enrichment of the semantics of the seismic damage based on the European Macroseismic Scale (EMS-98). The study area is the Vrisa traditional settlement on the island of Lesvos, Greece, which was affected by a devastating earthquake of Mw = 6.3 on 12 June 2017. The applied methodology consists of the following steps: (a) unmanned aircraft systems (UAS) nadir and oblique images are acquired and photogrammetrically processed for 3D point cloud generation, (b) 3D building models are created based on 3D point clouds and (c) 3D building models are transformed into a LOD3 City Geography Markup Language (CityGML) standard with enriched semantics of the related seismic damage of every part of the building (walls, roof, etc.). The results show that in following this methodology, CityGML LOD3 models can be generated and enriched with buildings’ seismic damage. These models can assist in the decision-making process during the recovery phase of a settlement as well as be the basis for its monitoring over time. Finally, these models can contribute to the estimation of the reconstruction cost of the buildings.


2021 ◽  
Vol 13 (9) ◽  
pp. 1859
Author(s):  
Xiangyang Liu ◽  
Yaxiong Wang ◽  
Feng Kang ◽  
Yang Yue ◽  
Yongjun Zheng

The characteristic parameters of Citrus grandis var. Longanyou canopies are important when measuring yield and spraying pesticides. However, the feasibility of the canopy reconstruction method based on point clouds has not been confirmed with these canopies. Therefore, LiDAR point cloud data for C. grandis var. Longanyou were obtained to facilitate the management of groves of this species. Then, a cloth simulation filter and European clustering algorithm were used to realize individual canopy extraction. After calculating canopy height and width, canopy reconstruction and volume calculation were realized using six approaches: by a manual method and using five algorithms based on point clouds (convex hull, CH; convex hull by slices; voxel-based, VB; alpha-shape, AS; alpha-shape by slices, ASBS). ASBS is an innovative algorithm that combines AS with slices optimization, and can best approximate the actual canopy shape. Moreover, the CH algorithm had the shortest run time, and the R2 values of VCH, VVB, VAS, and VASBS algorithms were above 0.87. The volume with the highest accuracy was obtained from the ASBS algorithm, and the CH algorithm had the shortest computation time. In addition, a theoretical but preliminarily system suitable for the calculation of the canopy volume of C. grandis var. Longanyou was developed, which provides a theoretical reference for the efficient and accurate realization of future functional modules such as accurate plant protection, orchard obstacle avoidance, and biomass estimation.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Richard L. Ybañez ◽  
Audrei Anne B. Ybañez ◽  
Alfredo Mahar Francisco A. Lagmay ◽  
Mario A. Aurelio

AbstractSmall unmanned aerial vehicles have been seeing increased deployment in field surveys in recent years. Their portability, maneuverability, and high-resolution imaging are useful in mapping surface features that satellite- and plane-mounted imaging systems could not access. In this study, we develop and apply a workplan for implementing UAV surveys in post-disaster settings to optimize the flights for the needs of the scientific team and first responders. Three disasters caused by geophysical hazards and their associated surface deformation impacts were studied implementing this workplan and was optimized based on the target features and environmental conditions. An earthquake that caused lateral spreading and damaged houses and roads near riverine areas were observed in drone images to have lengths of up to 40 m and vertical displacements of 60 cm. Drone surveys captured 2D aerial raster images and 3D point clouds leading to the preservation of these features in soft-sedimentary ground which were found to be tilled over after only 3 months. The point cloud provided a stored 3D environment where further analysis of the mechanisms leading to these fissures is possible. In another earthquake-devastated locale, areas hypothesized to contain the suspected source fault zone necessitated low-altitude UAV imaging below the treeline capturing Riedel shears with centimetric accuracy that supported the existence of extensional surface deformation due to fault movement. In the aftermath of a phreatomagmatic eruption and the formation of sub-metric fissures in nearby towns, high-altitude flights allowed for the identification of the location and dominant NE–SW trend of these fissures suggesting horst-and-graben structures. The workplan implemented and refined during these deployments will prove useful in surveying other post-disaster settings around the world, optimizing data collection while minimizing risk to the drone and the drone operators.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3619
Author(s):  
Yichao Yuan ◽  
Chung-Tse Michael Wu

Microwave radar sensors have been developed for non-contact monitoring of the health condition and location of targets, which will cause minimal discomfort and eliminate sanitation issues, especially in a pandemic situation. To this end, several radar sensor architectures and algorithms have been proposed to detect multiple targets at different locations. Traditionally, beamforming techniques incorporating phase shifters or mechanical rotors are utilized, which is relatively complex and costly. On the other hand, metamaterial (MTM) leaky wave antennas (LWAs) have a unique property of launching waves of different spectral components in different directions. This feature can be utilized to detect multiple targets at different locations to obtain their healthcare and location information accurately, without complex structure and high cost. To this end, this paper reviews the recent development of MTM LWA-based radar sensor architectures for vital sign detection and location tracking. The experimental results demonstrate the effectiveness of MTM vital sign radar compared with different radar sensor architectures.


Sign in / Sign up

Export Citation Format

Share Document