scholarly journals Wideband Circular Polarized Dielectric Resonator Antenna Array for Millimeter-Wave Applications

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3614
Author(s):  
Arun Kesavan ◽  
Mu’ath Al-Hassan ◽  
Ismail Ben Mabrouk ◽  
Tayeb A. Denidni

A novel circular polarized dielectric antenna array (DRA) for millimeter-wave applications at 30 GHz is presented in this paper. The unit element array is a flower-shaped DRA fed with a cross slot. To obtain circular polarization, a sequential network combined with the cross slots is used to feed the 2×2 array. The prototype of the proposed antenna array is fabricated and measured to obtain a wide resonance bandwidth from 27 GHz to 38 GHz frequency band. Furthermore, this left-hand polarized antenna array has achieved a peak gain of 9.5 dBi with 3-dB axial ratio at 30 GHz. The proposed DRA array with wideband resonance and gain bandwidth has the potential to be used for millimeter-wave wireless communications at the 30 GHz band.

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Stefano Maddio

A compact circular polarized antenna array with a convenient gain/bandwidth/dimension trade-off is proposed for applications in theC-band. The design is based on the recursive application of the sequential phase architecture, resulting in a 4 × 4 array of closely packed identical antennas. The 16 antenna elements are disc-based patches operating in modal degeneration, tuned to exhibit a broad while imperfect polarization. Exploiting the compact dimension of the patches and a space-filling design for the feeding network, the entire array is designed to minimize the occupied area. A prototype of the proposed array is fabricated with standard photoetching procedure in a single-layer via less printed board of overall area 80 × 80 mm2. Adequate left-hand polarization is observed over a wide bandwidth, demonstrating a convenient trade-off between bandwidth and axial ratio. Satisfying experimental results validate the proposed design, with a peak gain of 12.6 dB at 6.7 GHz maintained within 3 dB for 1 GHz, a very wide 10 dB return loss bandwidth of 3 GHz, and a 4 dB axial ratio bandwidth of 1.82 GHz, meaning 31% of fractional bandwidth.


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Ke Gong ◽  
Xue Hui Hu ◽  
Peng Hu ◽  
Bing Jie Deng ◽  
You Chao Tu

A series-fed linear substrate-integrated dielectric resonator antenna array (SIDRAA) is presented for millimeter-wave applications, in which the substrate-integrated dielectric resonator antenna (SIDRA) elements and the feeding structure can be codesigned and fabricated using the same planar process. A prototype 4 × 1 SIDRAA is designed at Ka-band and fabricated with a two-layer printed circuit board (PCB) technology. Four SIDRAs are implemented in the Rogers RT6010 substrate using the perforation technique and fed by a compact substrate-integrated waveguide (SIW) through four longitudinal coupling slots within the Rogers RT5880 substrate. The return loss, radiation patterns, and antenna gain were experimentally studied, and good agreement between the measured and simulated results is observed. The SIDRAA example provides a bandwidth of about 10% around 34.5 GHz for 10 dB return loss and stable broadside radiation patterns with the peak gain of 10.5–11.5 dBi across the band.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Huakang Chen ◽  
Yu Shao ◽  
Zhangjian He ◽  
Changhong Zhang ◽  
Zhizhong Zhang

A 2 × 2 wideband circularly polarized (CP) antenna array operating at millimeter wave (mmWave) band is presented. The array element is a wideband CP Archimedean spiral radiator with special-shaped ring slot. The elements are fed by an unequal amplitude (UA) feeding network based on a microstrip line (MSL) power divider. The side lobe level is improved by this UA feeding network. In addition, a cross slot is employed to isolate the elements for decoupling. A prototype is fabricated, and the measured results show that the proposed array achieves an impedance bandwidth (IBW) of 6.31 GHz (22.5% referring to 28 GHz) and an axial ratio bandwidth (ARBW) of 7.32 GHz (26.1% referring to 28 GHz). The peak gain of the proposed array is 11.3 dBic, and the gain is greater than 9.3 dBic within the whole desired band (from 25 GHz to 31 GHz). The proposed array consists of only one substrate layer and can be built by the conventional printed circuit board technology. Attributed to the characteristics of wide bandwidth, simple structure, low profile, and low cost, the proposed antenna array has a great potential in mmWave wireless communications.


2021 ◽  
Author(s):  
SACHIN KUMAR YADAV ◽  
Amanpreet Kaur ◽  
Rajesh Khanna

Abstract A circularly polarized hollow dielectric resonator antenna (CPHDRA) is designed for X-band applications. Rectangular dielectric resonator (RDR) is used as a radiator element, fed by a quarter-wave transformer (QWT) feedline. By performance of the RDR antenna, an air cylindrical rod structure is extracted from RDR to enhance the gain and impedance bandwidth. Two parasitic strips are placed on the top of the RDR to achieve circular polarization with reported ≤ 3-dB axial ratio (AR) bandwidth for X-band applications. In this article, UWB antenna covers range from 2.74 to 10.4GHz by using asymmetrical defective ground structure (DGS). In near field of the dielectric resonator, three different radiating modes namely HE11δ, HE21δ, HE23δ, and HE32δ are at 4.4, 6, 8.8, and 9.9 GHz. For the generation of circular polarization (CP), two orthogonal modes are generated at 8.8 and 9.9 GHz as per XZ and YZ planes. It has reported 23.8 % (8 to 10.1 GHz) of 3-dB AR bandwidth. The simulated and measured impedance bandwidths are 118.46 % and 121.12 % along with a peak gain of 6.55 dB without the use of a metallic reflector. By using a metallic reflector suspended in the bottom side of the substrate with a distance of 13.1mm is reported along with the peak gain of 9.8 dBi.


2021 ◽  
Vol 11 (18) ◽  
pp. 8779
Author(s):  
Yazeed Qasaymeh ◽  
Abdullah Almuhaisen ◽  
Ali Alghamdi

In this study, a compact 2 × 2 circularly polarized (CP) sequentially rotated (SR) dielectric resonator antenna (DRA) array operating in the IEEE 802.11a band is presented. To acquire the CP radiation, an elliptical slot (ES) was introduced to couple a rectangular dielectric resonator (RDR). The ES generates two resonant frequencies corresponding to the dominant even and odd modes. The SR feeder is made of four quarter-wavelength microstrip transformers to reduce the input impedance of the elements and, consequently, maximize the power transferred to each element. Experimental and simulation verifications were conducted on a 54 × 50 × 0.813 mm3 prototype to evaluate the performance of the proposed antenna array, which achieved a VSWR < −10 dB bandwidth of 1 GHz (5.1–6.05 GHz) and axial ratio (AR) < 3 dB of 0.95 GHz (5.1–5.85 GHz). The agreement between the simulated and measured results confirmed the validity of the proposed design.


Author(s):  
Ke Gong ◽  
Jiu Pei Shi ◽  
Bing Jie Deng ◽  
Jin Tu Sun ◽  
Peng Wang ◽  
...  

2018 ◽  
Vol 7 (4) ◽  
pp. 103-108 ◽  
Author(s):  
M. Saravanan ◽  
M. J. S. Rangachar

In this paper, a single fed polarization reconfigurable antenna is proposed. The antenna consists of a radiating patch incorporated with a diagonal-shaped slot at its center. Four p-i-n diodes are used for polarization reconfiguration. The p-i-n diodes are placed in diagonal slot region. The proposed antenna is designed to operate in three states – linear polarization (LP), left-hand circular polarization (LHCP) and right-hand circular polarization (RHCP) by biasing corresponding p-i-n diodes. The antenna gives measured peak gain of 6.2 dBi for LP state and 5.82 dBic for both RHCP and LHCP states. It also achieves 3-dB axial ratio bandwidth of 5.95% for both RHCP and LHCP configurations. The antenna finds application in areas of modern wireless communication.


Sign in / Sign up

Export Citation Format

Share Document