scholarly journals Polarization Reconfigurable Square Patch Antenna for Wireless Communications

2018 ◽  
Vol 7 (4) ◽  
pp. 103-108 ◽  
Author(s):  
M. Saravanan ◽  
M. J. S. Rangachar

In this paper, a single fed polarization reconfigurable antenna is proposed. The antenna consists of a radiating patch incorporated with a diagonal-shaped slot at its center. Four p-i-n diodes are used for polarization reconfiguration. The p-i-n diodes are placed in diagonal slot region. The proposed antenna is designed to operate in three states – linear polarization (LP), left-hand circular polarization (LHCP) and right-hand circular polarization (RHCP) by biasing corresponding p-i-n diodes. The antenna gives measured peak gain of 6.2 dBi for LP state and 5.82 dBic for both RHCP and LHCP states. It also achieves 3-dB axial ratio bandwidth of 5.95% for both RHCP and LHCP configurations. The antenna finds application in areas of modern wireless communication.

Frequenz ◽  
2019 ◽  
Vol 73 (5-6) ◽  
pp. 153-159
Author(s):  
Zhuo Mu ◽  
Shen-Yun Wang ◽  
Wen-Ying Meng

Abstract This paper reports a novel polarization-reconfigurable antenna array based on the theory of mode combination (MC), which can electronically alter its polarization states between left-hand circular polarization (LCP) mode, right-hand circular polarization (RCP) mode, and two combined linear polarization (LP) modes. The array element is adopted as the L-probes fed circularly-polarized antenna reported by Luk et al. [1]. To verify the concept, a prototype of 2×2 antenna array is manufactured and tested. By properly exciting the feeding probes, four polarization modes can be switchable. Measurement results show that the proposed antenna has an overlapped −10 dB impedance bandwidth around 34 % for both CP modes and LP(2) mode, and an overlapped 3 dB axial-ratio bandwidth around 22.0 % of the CP modes. The average realized gains are around 12.4 dB for CP modes and LP(1) mode, which remain stable in the axial-ratio bandwidth.


Frequenz ◽  
2019 ◽  
Vol 73 (9-10) ◽  
pp. 339-351
Author(s):  
Rohit Kumar Saini

Abstract A novel dual-band rectangular slot antenna is presented for dual-sense reconfigurable polarization. A W-shaped microstrip feedline and two rectangular parasitic patches are used to obtain dual-band circular polarization. Further, the feedline is modified so that the senses of polarization at the two bands are opposite. By introducing PIN-diodes in the feed lines, polarization can be switched among left-hand circular polarization (LHCP), right-hand circular polarization (RHCP), and linear polarization (LP). A prototype dual-band dual-sense antenna with f01 = 1.9 GHz and f02 = 3.45 GHz is fabricated in a 1.6 mm thick FR4 substrate. The measured circular polarized bandwidths are more than 7.6 % for the lower band and 5 % for the upper band.


2017 ◽  
Vol 9 (8) ◽  
pp. 1695-1703
Author(s):  
Haixiong Li ◽  
Yunlong Gong ◽  
Jiakai Zhang ◽  
Jun Ding ◽  
Chenjiang Guo

In this paper, a coplanar waveguide (CPW)-fed dual-band uniplanar tri-polarization reconfigurable antenna based on the PIN diode switch is proposed. The proposed antenna can be reconfigured between the linear polarization (LP) and the circular polarization (CP) mode, including both the right-handed circular polarization and left-handed circular polarization simultaneously within the dual operating bands. The central frequencies of the bands are 2.63 and 4.42 GHz, respectively, and the overlapped operating bandwidth is 17.8 and 3.40%. The proposed reconfigurable antenna is a closed-slot antenna fed by the CPW transmission line and the reconfigurable mechanism is to regulate the T-shaped driven stub through switching the PIN diodes on and off. The scattering parameters, axial ratio, radiation pattern, gain, and the radiation efficiency of the proposed antenna are all investigated in the following. The optimized antenna has been fabricated to experimental test, the simulated and the measured results agree well with each other. The lower frequency band of the proposed antenna covers the 2.40 GHz WLAN specification and the upper band can be used for the 5 G communication (4.40–4.50 GHz); therefore it is suitable to be applied in the mobile wireless communication.


In this communication, a circular patch antenna is reported for dual- band operation based on VIAs. Initially the patch is resonating at single band with Linear Polarization (LP), and the Circular Polarization (CP) is obtained by inserting semi circular cuts at the edges of circular patch. The second band is achieved by loading the vertical metallic VIAs along the circumference of the patch antenna. The reported antenna is working at 2.4 GHz (Wi-Fi) and 3.5 GHz (5G) bands with Return Loss Band Width (RLBW) of 4.83% and 10.37% respectively. The Axial Ratio (AR) bandwidth at 5G band is 2.38% (3.31- 3.39 GHz)


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1085
Author(s):  
Phanuphong Boontamchauy ◽  
Titipong Lertwiriyaprapa ◽  
Chuwong Phongcharoenpanich

This research proposes an inverted L-shaped patch antenna with a corner-truncated partial ground plane diagonally adjoined to a square branch for L-band applications. The adjoining square branch was used to perturb linear polarization for circular polarization, and the corner-truncated partial ground plane was utilized to enhance the axial ratio bandwidth (ARBW). Simulations were performed, an antenna prototype was fabricated, and experiments were carried out. The simulation and measured results were in good agreement. The proposed antenna could achieve an ARBW of 77.87% (1.09–2.48 GHz). The novelty of this research lies in the concurrent use of a square branch and a corner-truncated partial ground plane to realize wide ARBW in an L-band, rendering the technology suitable for satellite communication and navigation applications.


2014 ◽  
Vol 7 (6) ◽  
pp. 753-758 ◽  
Author(s):  
Ch. Sulakshana ◽  
L. Anjaneyulu

This paper presents a simple and compact coplanar waveguide (CPW)-fed circular-shaped reconfigurable patch antenna with a switchable circular polarization (CP) sense. The circular patch is cut at the ends vertically and switches are introduced to connect the patch ends. By controlling the ON/OFF status of the two switches, the polarization of the antenna can be switched between two states: left-hand circular polarization and right-hand circular polarization. The patch is designed on a very thin RT Duroid substrate of dielectric constant (εr) of 2.2 and thickness of 0.254 mm. The overall antenna dimensions are 35 × 30 mm. The antenna is designed and simulated using finite-element method -based EM simulator, HFSS. For each switching condition the return loss curve, radiation pattern are obtained. Axial ratio curves for polarization diversity cases are also plotted. Parametric studies have been made in order to get optimized values for certain antenna dimensions such as thickness, CPW ground to feed gap, etc.


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Manavalan Saravanan ◽  
Madihally Janardhana Srinivasa Rangachar

A single feed circularly polarized patch antenna is presented. The antenna consists of a rhombus-shaped slot incorporated in the radiating patch at its center. The antenna is designed to operate at 2.3 GHz band. The antenna achieves left-hand polarization or right-hand polarization based on the orientation of the slot in the radiating patch. The antenna parameters are synthesized using a high-frequency structure simulator and its characteristics are validated by the Agilent network analyzer (N9925A) and antenna test systems. The measured results obtained agree with simulated results and show that the antenna achieves −10 dB impedance bandwidth of 85 MHz (2.27 GHz–2.355 GHz) for left-hand polarization and 85 MHz (2.26 GHz–2.345 GHz) for right-hand polarization. The antenna gives a 3 dB axial ratio beamwidth of 95°(−35° ≤ AR ≤ 60°) for both left-hand polarization and right-hand polarization along with better 3 dB axial ratio bandwidth of 140° in the operating band. The antenna also achieves a good cross-polarization isolation of −17 dBic for both left-hand and right-hand polarization at its operating frequency. Hence, the antenna is best suited for modern wireless communication systems.


Electronics ◽  
2018 ◽  
Vol 7 (11) ◽  
pp. 293 ◽  
Author(s):  
Yasir Al-Yasir ◽  
Abdulkareem Abdullah ◽  
Naser Ojaroudi Parchin ◽  
Raed Abd-Alhameed ◽  
James Noras

This paper presented a new circular polarization reconfigurable antenna for 5G wireless communications. The antenna, containing a semicircular slot, was compact in size and had a good axial ratio and frequency response. Two PIN diode switches controlled the reconfiguration for both the right-hand and left-hand circular polarization. Reconfigurable orthogonal polarizations were achieved by changing the states of the two PIN diode switches, and the reflection coefficient |S11| was maintained, which is a strong benefit of this design. The proposed polarization-reconfigurable antenna was modeled using the Computer Simulation Technology (CST) software. It had a 3.4 GHz resonance frequency in both states of reconfiguration, with a good axial ratio below 1.8 dB, and good gain of 4.8 dBic for both modes of operation. The proposed microstrip antenna was fabricated on an FR-4 substrate with a loss tangent of 0.02, and relative dielectric constant of 4.3. The radiating layer had a maximum size of 18.3 × 18.3 mm2, with 50 Ω coaxial probe feeding.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Yun Zhou ◽  
Shaojun Fang ◽  
Hongmei Liu ◽  
Shiqiang Fu

A novel polarization-reconfigurable conical helical antenna based on the liquid metal is presented. The antenna is implemented by using truncated structure, variable pitch angle, a matching stub, and a mechanical autorotation device. The experimental results show that a good agreement between simulations and measurements is obtained. The gain of the antenna achieves higher than 8 dBi in the work band (1525–1660.5 MHz), and the 3 dB axial ratio (AR) bandwidth reaches 410 MHz. The polarization mode of the antenna can be switched between right-hand and left-hand circular polarization.


2018 ◽  
Author(s):  
Yohandri

A circularly polarized microstrip antenna for bi-static SAR onboard UAV has been investigated. The both senseof the circular polarization left-hand circularly polarized (LHCP) and right-hand circularly polarized (RHCP) arecan be achieved on experimental and simulation. The 2x2 sub array antenna operated in 1.176 (L-band) withnovel proximity synchronous feed method has been designed, fabricated, and evaluated to show the characteristic of the antenna. The measured result give the axial ratio bandwidth (<3dB) of about 28 MHz (2%), whichconsistent with the simulated result of about 27 MHz (2%). These results satisfy the specification for our BiSARsystem installed onboard UAV.


Sign in / Sign up

Export Citation Format

Share Document