broadside radiation
Recently Published Documents


TOTAL DOCUMENTS

111
(FIVE YEARS 40)

H-INDEX

12
(FIVE YEARS 3)

2022 ◽  
Vol 6 (1) ◽  
pp. 1-15
Author(s):  
Arebu Dejen ◽  
◽  
Jeevani Jayasinghe ◽  
Murad Ridwan ◽  
Jaume Anguera ◽  
...  

<abstract><p>Multi-band microstrip patch antennas are convenient for mm-wave wireless applications due to their low profile, less weight, and planar structure. This paper investigates patch geometry optimization of a single microstrip antenna by employing a binary coded genetic algorithm to attain triple band frequency operation for wireless network application. The algorithm iteratively creates new models of patch surface, evaluates the fitness function of each individual ranking them and generates the next set of offsprings. Finally, the fittest individual antenna model is returned. Genetically engineered antenna was simulated in ANSYS HFSS software and compared with the non-optimized reference antenna with the same dimensions. The optimized antenna operates at three frequency bands centered at 28 GHz, 40 GHz, and 47 GHz whereas the reference antenna operates only at 28 GHz with a directivity of 6.8 dB. Further, the test result exhibits broadside radiation patterns with peak directivities of 7.7 dB, 12.1 dB, and 8.2 dB respectively. The covered impedance bandwidths when S<sub>11</sub>$ \leq $-10 dB are 1.8 %, 5.5 % and 0.85 % respectively.</p></abstract>


2021 ◽  
Author(s):  
Reza Zaker ◽  
Mohsen Khalily ◽  
Rahim Tafazolli ◽  
Ahmed A. Kishk

Abstract In this paper, a design of a monopole-based four-element MIMO array antenna is proposed. The design is based on a novel technique that makes a patch be a ground plane of the next patch. Thus, each patch has a dual function. This method is named the sharing technique. Thus, for the first time, two of such antennas can be merged, providing a subminiature structure. The method is introduced step by step. Then, a 2×2 MIMO array with a total area of 49×49 mm 2 is designed, which provides a miniaturized of 57% (from 0.18λ 2 0 to 0.076λ 2 0 @ 1.7GHz). Two linearly-polarized array samples are evaluated. One sample with center-fed patches and another with off-center-fed. Both samples provide a semi-end-fire pattern with a minimum front-to-back (F/B) ratio of 11dB and 360° rotation capability with wide 10-dB S 11 bandwidths over 100%. Moreover, an ultra-wideband circularly polarized array with broadside radiation can be achieved by simultaneous, sequential exciting all ports. The antenna achieves isolation better than 15dB, peak efficiency of 95%, and 5.9dBi gain verified with different measurements.


Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5678
Author(s):  
Jiahao Zhang ◽  
Jin Meng ◽  
Wei Li ◽  
Sen Yan ◽  
Guy A. E. Vandenbosch

A novel wearable button antenna sensor is proposed for the concept of simultaneous wireless information and power transfer (SWIPT). This integrates two working modes for the transfer of power and information, respectively, and optimizes transfer efficiency. An omni-directional radiation pattern is achieved in the 3.5 GHz World Interoperability for Microwave Access (WiMAX) band to support on-body wireless communications, while a circularly polarized broadside radiation pattern is obtained in the 5 GHz wireless local area networks (WLAN) band to harvest power. The measured −10 dB return loss bandwidths are 4.0% (3.47–3.61 GHz) in the lower band, and 25.0% (4.51–5.80 GHz) in the higher band, respectively. An artificial magnetic conductor (AMC) structure with wideband characteristics is applied to obtain a low-profile design and to increase the stability of the antenna sensor. A high radiation efficiency of over 80% in the whole working band is observed. The specific absorption rate (SAR) of the proposed antenna sensor is below 0.509 W/kg at 3.55 GHz, and below 0.0532 W/kg at 5.5 GHz, respectively, which is much lower than the European standard threshold of 2 W/kg. All these characteristics make the designed antenna sensor suitable for on-body information transmission and off-body energy harvesting. The antenna sensor has been prototyped. Simulations and measurements agree well, proving the validity of the new concept.


2021 ◽  
Vol 1 (8) ◽  
pp. 084804
Author(s):  
Jiale Wang ◽  
Wen Zhang ◽  
Chao Pan ◽  
Jingdong Chen ◽  
Jacob Benesty

Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1645
Author(s):  
Iftikhar Ahmed ◽  
Sultan Shoaib ◽  
Raza Ali Shah

In this paper, a slot antenna array based on a half-mode substrate integrated waveguide (HMSIW) is presented, integrating a series of linearly tapered slots for wireless broadband applications in millimeter-wave frequencies. The slots are etched on the upper layer of HMSIW, which radiates the energy from the open side of HMSIW, exhibiting a near broadside radiation pattern. Two identical sets of back-to-back printed antenna arrays are cross-lap joined to form a quad sector antenna providing 360° coverage. The proposed antenna occupies a volume of 20 × 20 × 70 mm3. The measured bandwidth is 1.81 GHz (6.53%) for Voltage to Standing Wave Ratio (VSWR) 3:1 from 26.8 to 28.6 GHz, while the peak measured gain and efficiency of single antenna array were 14.2 dB and 71.3%, respectively, at 27.5 GHz. Furthermore, the sidelobe level in the azimuth plane was observed to be 17.75 dB. The performance of the proposed antenna is measured, and a good agreement between simulation and measured results is observed over the frequency range of 27.5–28.35 GHz for millimeter-wave 5G applications.


2021 ◽  
Vol 36 (5) ◽  
pp. 568-576
Author(s):  
Chaitanya Bethala ◽  
Manjunatha Kamsali

In this article, a pentaband rectangular DRA is explored and presented. The proposed antenna has a crescent-shaped radiating element with defected ground structure and it is feed by 50‐Ω microstrip line. The RDRA invariably has two similar dielectric resonators made up of RT5870 is positioned on top of the crescent-shaped patch. With the use of a dielectric resonator, the proposed structure has good improvement in impedance bandwidth and gain. The proposed rectangular DRA has penta operating frequency bands with resonant frequency at 1.49 GHz, 2.00 GHz, 2.50 GHz, 5.49 GHz, and 7.75 GHz. The projected structure exhibits the broadside radiation pattern with the maximum gain and directivity of 4 dBi and 4.5 dBi, respectively. The gig of the projected RDRA is validated with the help of simulated results by CST software. The observed results of the proposed antenna indicate that it can be a potential candidate for GPS, PCS, UMTS, ISM, WLAN, Wi-MAX applications.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4058
Author(s):  
Hauke Ingolf Kremer ◽  
Kwok Wa Leung ◽  
Wai Cheung Wong ◽  
Kenneth Kam-Wing Lo ◽  
Mike W. K. Lee

In this publication, the use of a dielectric paste for dielectric resonator antenna (DRA) design is investigated. The dielectric paste can serve as an alternative approach of manufacturing a dielectric resonator antenna by subsequently filling a mold with the dielectric paste. The dielectric paste is obtained by mixing nanoparticle sized barium strontium titanate (BST) powder with a silicone rubber. The dielectric constant of the paste can be adjusted by varying the BST powder content with respect to the silicone rubber content. The tuning range of the dielectric constant of the paste was found to be from 3.67 to 18.45 with the loss tangent of the mixture being smaller than 0.044. To demonstrate the idea of the dielectric paste approach, a circularly polarized DRA with wide bandwidth, which is based on a fractal geometry, is designed. The antenna is realized by filling a 3D-printed mold with the dielectric paste material, and the prototype was found to have an axial ratio bandwidth of 16.7% with an impedance bandwidth of 21.6% with stable broadside radiation.


2021 ◽  
Vol 36 (3) ◽  
pp. 273-281
Author(s):  
Melih Turk ◽  
Fikret Tokan

The backward radiation is a critical problem that may cause breakdown of the front-end circuits that are integrated behind the antenna. Thus, antennas having high Front to Back Ratio (FBR) are required. For phased arrays, the back lobe suppression is required for all scanning angles at all frequencies of the band. In this work, a stacked patch linear array with asymmetric configuration is proposed. It is capable of scanning the beam in ±40° with less than 1.34 dB scanning loss. Due to the usage of probe-fed stacked patches as the antenna elements, impedance matching in 8-10 GHz is achieved. More than 30 dB FBR is obtained for broadside radiation. It is above 20 dB when the beam is steered to θ = 40°. This is valid for all frequencies of the band. A prototype is fabricated and measured. Higher than 38 dB FBR is observed. With its broadband, high FBR and low scanning loss, the proposed asymmetrical stacked patch phased array is suitable as radar and base station antenna.


2021 ◽  
Vol 2021 ◽  
pp. 1-5
Author(s):  
Xingying Huo ◽  
Zheng Li

When a leaky rectangular waveguide is used to realize the coverage of radio wave in the small confined spaces, there will be a shadow region, which influences the coverage performance. In this paper, the traditional leaky rectangular waveguide is improved according to the principle of the equivalent circuit, by cutting interdigital slots in the upper wall and adding uniserial metal vias between the upper and lower walls of the rectangular waveguide. Thus, the right/left-handed transmission line property is introduced to the periodic leaky-waveguide (LWG), realizing the broadside radiation with relatively high gain (15.7 dBi), good cross polarization (−50 dB), and narrow half-power beamwidth (10.9°) at 6.97 GHz and providing a method for a uniform coverage of the radio wave in rooms without a shadow region.


Sign in / Sign up

Export Citation Format

Share Document