scholarly journals Classification of Motor Imagery Electroencephalography Signals Based on Image Processing Method

Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4646
Author(s):  
Zhongye Chen ◽  
Yijun Wang ◽  
Zhongyan Song

In recent years, more and more frameworks have been applied to brain-computer interface technology, and electroencephalogram-based motor imagery (MI-EEG) is developing rapidly. However, it is still a challenge to improve the accuracy of MI-EEG classification. A deep learning framework termed IS-CBAM-convolutional neural network (CNN) is proposed to address the non-stationary nature, the temporal localization of excitation occurrence, and the frequency band distribution characteristics of the MI-EEG signal in this paper. First, according to the logically symmetrical relationship between the C3 and C4 channels, the result of the time-frequency image subtraction (IS) for the MI-EEG signal is used as the input of the classifier. It both reduces the redundancy and increases the feature differences of the input data. Second, the attention module is added to the classifier. A convolutional neural network is built as the base classifier, and information on the temporal location and frequency distribution of MI-EEG signal occurrences are adaptively extracted by introducing the Convolutional Block Attention Module (CBAM). This approach reduces irrelevant noise interference while increasing the robustness of the pattern. The performance of the framework was evaluated on BCI competition IV dataset 2b, where the mean accuracy reached 79.6%, and the average kappa value reached 0.592. The experimental results validate the feasibility of the framework and show the performance improvement of MI-EEG signal classification.

Entropy ◽  
2019 ◽  
Vol 21 (12) ◽  
pp. 1199 ◽  
Author(s):  
Hyeon Kyu Lee ◽  
Young-Seok Choi

The motor imagery-based brain-computer interface (BCI) using electroencephalography (EEG) has been receiving attention from neural engineering researchers and is being applied to various rehabilitation applications. However, the performance degradation caused by motor imagery EEG with very low single-to-noise ratio faces several application issues with the use of a BCI system. In this paper, we propose a novel motor imagery classification scheme based on the continuous wavelet transform and the convolutional neural network. Continuous wavelet transform with three mother wavelets is used to capture a highly informative EEG image by combining time-frequency and electrode location. A convolutional neural network is then designed to both classify motor imagery tasks and reduce computation complexity. The proposed method was validated using two public BCI datasets, BCI competition IV dataset 2b and BCI competition II dataset III. The proposed methods were found to achieve improved classification performance compared with the existing methods, thus showcasing the feasibility of motor imagery BCI.


Sensors ◽  
2019 ◽  
Vol 19 (3) ◽  
pp. 551 ◽  
Author(s):  
Mengxi Dai ◽  
Dezhi Zheng ◽  
Rui Na ◽  
Shuai Wang ◽  
Shuailei Zhang

Successful applications of brain-computer interface (BCI) approaches to motor imagery (MI) are still limited. In this paper, we propose a classification framework for MI electroencephalogram (EEG) signals that combines a convolutional neural network (CNN) architecture with a variational autoencoder (VAE) for classification. The decoder of the VAE generates a Gaussian distribution, so it can be used to fit the Gaussian distribution of EEG signals. A new representation of input was developed by combining the time, frequency, and channel information from the EEG signal, and the CNN-VAE method was designed and optimized accordingly for this form of input. In this network, the classification of the extracted CNN features is performed via the deep network VAE. Our framework, with an average kappa value of 0.564, outperforms the best classification method in the literature for BCI Competition IV dataset 2b with a 3% improvement. Furthermore, using our own dataset, the CNN-VAE framework also yields the best performance for both three-electrode and five-electrode EEGs and achieves the best average kappa values 0.568 and 0.603, respectively. Our results show that the proposed CNN-VAE method raises performance to the current state of the art.


Author(s):  
Geliang Tian ◽  
Yue Liu

This article proposes a classification method of two-class motor imagery electroencephalogram (EEG) signals based on convolutional neural network (CNN), in which EEG signals from C3, C4 and Cz electrodes of publicly available BCI competition IV dataset 2b were used to test the performance of the CNN. The authors investigate two similar CNNs: a single-input CNN with a form of 2-dimensional input from short time Fourier transform (STFT) combining time, frequency and location information, and a multiple-input CNN with 3-dimensional input which processes the electrodes as an independent dimension. Fisher discriminant analysis-type F-score based on band pass (BP) feature and power spectra density (PSD) feature are employed respectively to select the subject-optimal frequency bands. In the experiments, typical frequency bands related to motor imagery EEG signals, subject-optimal frequency bands and extension frequency bands are employed respectively as the frequency range of the input image of CNN. The better classification performance of extension frequency bands show that CNN can extract optimal feature from frequency information automatically. The classification result also demonstrates that the proposed approach is more competitive in prediction of left/right hand motor imagery task compared with other state-of-art approaches.


2021 ◽  
Vol 11 (2) ◽  
pp. 197
Author(s):  
Tianjun Liu ◽  
Deling Yang

Motor imagery (MI) is a classical method of brain–computer interaction (BCI), in which electroencephalogram (EEG) signal features evoked by imaginary body movements are recognized, and relevant information is extracted. Recently, various deep-learning methods are being focused on in finding an easy-to-use EEG representation method that can preserve both temporal information and spatial information. To further utilize the spatial and temporal features of EEG signals, an improved 3D representation of the EEG and a densely connected multi-branch 3D convolutional neural network (dense M3D CNN) for MI classification are introduced in this paper. Specifically, as compared to the original 3D representation, a new padding method is proposed to pad the points without electrodes with the mean of all the EEG signals. Based on this new 3D presentation, a densely connected multi-branch 3D CNN with a novel dense connectivity is proposed for extracting the EEG signal features. Experiments were carried out on the WAY-EEG-GAL and BCI competition IV 2a datasets to verify the performance of this proposed method. The experimental results show that the proposed framework achieves a state-of-the-art performance that significantly outperforms the multi-branch 3D CNN framework, with a 6.208% improvement in the average accuracy for the BCI competition IV 2a datasets and 6.281% improvement in the average accuracy for the WAY-EEG-GAL datasets, with a smaller standard deviation. The results also prove the effectiveness and robustness of the method, along with validating its use in MI-classification tasks.


2020 ◽  
Vol 10 (5) ◽  
pp. 1605 ◽  
Author(s):  
Feng Li ◽  
Fan He ◽  
Fei Wang ◽  
Dengyong Zhang ◽  
Yi Xia ◽  
...  

Left and right hand motor imagery electroencephalogram (MI-EEG) signals are widely used in brain-computer interface (BCI) systems to identify a participant intent in controlling external devices. However, due to a series of reasons, including low signal-to-noise ratios, there are great challenges for efficient motor imagery classification. The recognition of left and right hand MI-EEG signals is vital for the application of BCI systems. Recently, the method of deep learning has been successfully applied in pattern recognition and other fields. However, there are few effective deep learning algorithms applied to BCI systems, particularly for MI based BCI. In this paper, we propose an algorithm that combines continuous wavelet transform (CWT) and a simplified convolutional neural network (SCNN) to improve the recognition rate of MI-EEG signals. Using the CWT, the MI-EEG signals are mapped to time-frequency image signals. Then the image signals are input into the SCNN to extract the features and classify them. Tested by the BCI Competition IV Dataset 2b, the experimental results show that the average classification accuracy of the nine subjects is 83.2%, and the mean kappa value is 0.651, which is 11.9% higher than that of the champion in the BCI Competition IV. Compared with other algorithms, the proposed CWT-SCNN algorithm has a better classification performance and a shorter training time. Therefore, this algorithm could enhance the classification performance of MI based BCI and be applied in real-time BCI systems for use by disabled people.


2021 ◽  
Vol 11 (6) ◽  
pp. 2838
Author(s):  
Nikitha Johnsirani Venkatesan ◽  
Dong Ryeol Shin ◽  
Choon Sung Nam

In the pharmaceutical field, early detection of lung nodules is indispensable for increasing patient survival. We can enhance the quality of the medical images by intensifying the radiation dose. High radiation dose provokes cancer, which forces experts to use limited radiation. Using abrupt radiation generates noise in CT scans. We propose an optimal Convolutional Neural Network model in which Gaussian noise is removed for better classification and increased training accuracy. Experimental demonstration on the LUNA16 dataset of size 160 GB shows that our proposed method exhibit superior results. Classification accuracy, specificity, sensitivity, Precision, Recall, F1 measurement, and area under the ROC curve (AUC) of the model performance are taken as evaluation metrics. We conducted a performance comparison of our proposed model on numerous platforms, like Apache Spark, GPU, and CPU, to depreciate the training time without compromising the accuracy percentage. Our results show that Apache Spark, integrated with a deep learning framework, is suitable for parallel training computation with high accuracy.


Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1248
Author(s):  
Rafia Nishat Toma ◽  
Cheol-Hong Kim ◽  
Jong-Myon Kim

Condition monitoring is used to track the unavoidable phases of rolling element bearings in an induction motor (IM) to ensure reliable operation in domestic and industrial machinery. The convolutional neural network (CNN) has been used as an effective tool to recognize and classify multiple rolling bearing faults in recent times. Due to the nonlinear and nonstationary nature of vibration signals, it is quite difficult to achieve high classification accuracy when directly using the original signal as the input of a convolution neural network. To evaluate the fault characteristics, ensemble empirical mode decomposition (EEMD) is implemented to decompose the signal into multiple intrinsic mode functions (IMFs) in this work. Then, based on the kurtosis value, insignificant IMFs are filtered out and the original signal is reconstructed with the rest of the IMFs so that the reconstructed signal contains the fault characteristics. After that, the 1-D reconstructed vibration signal is converted into a 2-D image using a continuous wavelet transform with information from the damage frequency band. This also transfers the signal into a time-frequency domain and reduces the nonstationary effects of the vibration signal. Finally, the generated images of various fault conditions, which possess a discriminative pattern relative to the types of faults, are used to train an appropriate CNN model. Additionally, with the reconstructed signal, two different methods are used to create an image to compare with our proposed image creation approach. The vibration signal is collected from a self-designed testbed containing multiple bearings of different fault conditions. Two other conventional CNN architectures are compared with our proposed model. Based on the results obtained, it can be concluded that the image generated with fault signatures not only accurately classifies multiple faults with CNN but can also be considered as a reliable and stable method for the diagnosis of fault bearings.


Entropy ◽  
2021 ◽  
Vol 23 (1) ◽  
pp. 119
Author(s):  
Tao Wang ◽  
Changhua Lu ◽  
Yining Sun ◽  
Mei Yang ◽  
Chun Liu ◽  
...  

Early detection of arrhythmia and effective treatment can prevent deaths caused by cardiovascular disease (CVD). In clinical practice, the diagnosis is made by checking the electrocardiogram (ECG) beat-by-beat, but this is usually time-consuming and laborious. In the paper, we propose an automatic ECG classification method based on Continuous Wavelet Transform (CWT) and Convolutional Neural Network (CNN). CWT is used to decompose ECG signals to obtain different time-frequency components, and CNN is used to extract features from the 2D-scalogram composed of the above time-frequency components. Considering the surrounding R peak interval (also called RR interval) is also useful for the diagnosis of arrhythmia, four RR interval features are extracted and combined with the CNN features to input into a fully connected layer for ECG classification. By testing in the MIT-BIH arrhythmia database, our method achieves an overall performance of 70.75%, 67.47%, 68.76%, and 98.74% for positive predictive value, sensitivity, F1-score, and accuracy, respectively. Compared with existing methods, the overall F1-score of our method is increased by 4.75~16.85%. Because our method is simple and highly accurate, it can potentially be used as a clinical auxiliary diagnostic tool.


Sign in / Sign up

Export Citation Format

Share Document