scholarly journals Accurate and Low-Complexity Auto-Fingerprinting for Enhanced Reliability of Indoor Localization Systems

Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5346
Author(s):  
Elias Hatem ◽  
Sergio Fortes ◽  
Elizabeth Colin ◽  
Sara Abou-Chakra ◽  
Jean-Marc Laheurte ◽  
...  

Indoor localization is one of the most important topics in wireless navigation systems. The large number of applications that rely on indoor positioning makes advancements in this field important. Fingerprinting is a popular technique that is widely adopted and induces many important localization approaches. Recently, fingerprinting based on mobile robots has received increasing attention. This work focuses on presenting a simple, cost-effective and accurate auto-fingerprinting method for an indoor localization system based on Radio Frequency Identification (RFID) technology and using a two-wheeled robot. With this objective, an assessment of the robot’s navigation is performed in order to investigate its displacement errors and elaborate the required corrections. The latter are integrated in our proposed localization system, which is divided into two stages. From there, the auto-fingerprinting method is implemented while modeling the tag-reader link by the Dual One Slope with Second Order propagation Model (DOSSOM) for environmental calibration, within the offline stage. During the online stage, the robot’s position is estimated by applying DOSSOM followed by multilateration. Experimental localization results show that the proposed method provides a positioning error of 1.22 m at the cumulative distribution function of 90%, while operating with only four RFID active tags and an architecture with reduced complexity.

2018 ◽  
Vol 14 (4) ◽  
pp. 155014771877128 ◽  
Author(s):  
Jinkai Liu ◽  
Yanqing Qiu ◽  
Kezhao Yin ◽  
Wentong Dong ◽  
Jiaqing Luo

The radio frequency identification technology was given greater interest as it is widely used for identification and localization in the cognitive radio sensor networks. While radio frequency identification–based indoor localization is attractive, the need for a large-scale and high-density deployment of readers and reference tags is costly. Using mobile readers mounted on guide rails, we design and implement an RFID indoor localization system, which requires neither reference tags nor received signal strength indicator functions, for stock-taking and searching in warehouse operations. In particular, we install two guide rails, which can allow a reader to move horizontally or vertically, on the ceiling of a warehouse or workshop. We then propose a continuous scanning algorithm to improve the accuracy for locating a single tagged object and a category-based scheduling algorithm to shorten the time for locating multiple tagged objects. Our primary experimental results show that RFID indoor localization system can achieve high time efficiency and localization accuracy in the indoor localization.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 72862-72871
Author(s):  
Xiliang Yin ◽  
Lin Ma ◽  
Xuezhi Tan ◽  
Danyang Qin

Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4100 ◽  
Author(s):  
Elias Hatem ◽  
Sara Abou-Chakra ◽  
Elizabeth Colin ◽  
Jean-Marc Laheurte ◽  
Bachar El-Hassan

Indoor localization has recently witnessed an increase in interest due to its wide range of potential services. Further, the location information is very important in many applications, such as the Internet of Things, logistics, library management and so on. Hence, different technologies and techniques have been proposed in the literature for indoor localization systems. Most of these systems present the disadvantages of a poor performance, low accuracy and high cost. However, thanks to its low cost, high accuracy and non-line-of-sight detection, radio frequency identification (RFID)-based localization has increasingly become the most used technology for indoor localization. In this paper, we propose an innovative approach based on the multiple input single output (MISO) protocol to improve the accuracy of a low-cost RFID localization system. Whereas most traditional systems use a single tag for localization, the proposed architecture encourages the use of a group of RFID tags named as a constellation. According to experimental results and based on the signals’ diversity, the location accuracy is improved to get an estimated position error of 81 cm at the cumulative distribution function of 90%.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6447
Author(s):  
Keliu Long ◽  
Darryl Franck Nsalo Kong ◽  
Kun Zhang ◽  
Chuan Tian ◽  
Chong Shen

A fingerprint-based localization system is an economic way to solve an indoor positioning problem. However, the traditional off-line fingerprint collection stage is a time-consuming and laborious process which limits the use of fingerprint-based localization systems. In this paper, based on ubiquitous Wireless Fidelity (Wi-Fi) equipment and a low-cost Ultra-Wideband (UWB) ranging system (with only one UWB anchor), a ready-to-use indoor localization system is proposed to realize long-term and high-accuracy indoor positioning. More specifically, in this system, it is divided into two stages: (1) an initial stage, and (2) a positioning stage. In the initial stage, an Inertial Measure Unit (IMU) is used to calculate the position using Pedestrian Dead Reckon (PDR) algorithm within a preset number of steps, and the location-related fingerprints are collected to train a Convolutional Neural Network (CNN) regression model; simultaneously, in order to make the UWB ranging system adapt to the Non-Line-of-Sight (NLoS) environment, the increments of acceleration and angular velocity in IMU and the increments of single UWB ranging measures are correlated to pre-train a Supported Vector Regression (SVR). After reaching the threshold of time or step number, the system is changed into a positioning stage, and the CNN predicts the position calibrated by corrected UWB ranging. At last, a series of practical experiments are conducted in the real environment; the experiment results show that, due to the corrected UWB ranging measures calibrating the CNN parameters in every positioning period, this system has stable localization results in a comparative long-term range. Additionally, it has the advantages of stability, low cost, anti-noise, etc.


Sensors ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 344 ◽  
Author(s):  
Hui Zhang ◽  
Zonghua Zhang ◽  
Nan Gao ◽  
Yanjun Xiao ◽  
Zhaozong Meng ◽  
...  

Wearable indoor localization can now find applications in a wide spectrum of fields, including the care of children and the elderly, sports motion analysis, rehabilitation medicine, robotics navigation, etc. Conventional inertial measurement unit (IMU)-based position estimation and radio signal indoor localization methods based on WiFi, Bluetooth, ultra-wide band (UWB), and radio frequency identification (RFID) all have their limitations regarding cost, accuracy, or usability, and a combination of the techniques has been considered a promising way to improve the accuracy. This investigation aims to provide a cost-effective wearable sensing solution with data fusion algorithms for indoor localization and real-time motion analysis. The main contributions of this investigation are: (1) the design of a wireless, battery-powered, and light-weight wearable sensing device integrating a low-cost UWB module-DWM1000 and micro-electromechanical system (MEMS) IMU-MPU9250 for synchronized measurement; (2) the implementation of a Mahony complementary filter for noise cancellation and attitude calculation, and quaternions for frame rotation to obtain the continuous attitude for displacement estimation; (3) the development of a data fusion model integrating the IMU and UWB data to enhance the measurement accuracy using Kalman-filter-based time-domain iterative compensations; and (4) evaluation of the developed sensor module by comparing it with UWB- and IMU-only solutions. The test results demonstrate that the average error of the integrated module reached 7.58 cm for an arbitrary walking path, which outperformed the IMU- and UWB-only localization solutions. The module could recognize lateral roll rotations during normal walking, which could be potentially used for abnormal gait recognition.


Sensors ◽  
2020 ◽  
Vol 20 (14) ◽  
pp. 3933
Author(s):  
Mohammed El-Absi ◽  
Feng Zheng ◽  
Ashraf Abuelhaija ◽  
Ali Al-haj Abbas ◽  
Klaus Solbach ◽  
...  

Indoor localization based on unsynchronized, low-complexity, passive radio frequency identification (RFID) using the received signal strength indicator (RSSI) has a wide potential for a variety of internet of things (IoTs) applications due to their energy-harvesting capabilities and low complexity. However, conventional RSSI-based algorithms present inaccurate ranging, especially in indoor environments, mainly because of the multipath randomness effect. In this work, we propose RSSI-based localization with low-complexity, passive RFID infrastructure utilizing the potential benefits of large-scale MIMO technology operated in the millimeter-wave band, which offers channel hardening, in order to alleviate the effect of small-scale fading. Particularly, by investigating an indoor environment equipped with extremely simple dielectric resonator (DR) tags, we propose an efficient localization algorithm that enables a smart object equipped with large-scale MIMO exploiting the RSSI measurements obtained from the reference DR tags in order to improve the localization accuracy. In this context, we also derive Cramer–Rao lower bound of the proposed technique. Numerical results evidence the effectiveness of the proposed algorithms considering various arbitrary network topologies, and results are compared with an existing algorithm, where the proposed algorithms not only produce higher localization accuracy but also achieve a greater robustness against inaccuracies in channel modeling.


Author(s):  
Nadia Ghariani ◽  
Mohamed Salah Karoui ◽  
Mondher Chaoui ◽  
Mongi Lahiani ◽  
Hamadi Ghariani

Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 574
Author(s):  
Chendong Xu ◽  
Weigang Wang ◽  
Yunwei Zhang ◽  
Jie Qin ◽  
Shujuan Yu ◽  
...  

With the increasing demand of location-based services, neural network (NN)-based intelligent indoor localization has attracted great interest due to its high localization accuracy. However, deep NNs are usually affected by degradation and gradient vanishing. To fill this gap, we propose a novel indoor localization system, including denoising NN and residual network (ResNet), to predict the location of moving object by the channel state information (CSI). In the ResNet, to prevent overfitting, we replace all the residual blocks by the stochastic residual blocks. Specially, we explore the long-range stochastic shortcut connection (LRSSC) to solve the degradation problem and gradient vanishing. To obtain a large receptive field without losing information, we leverage the dilated convolution at the rear of the ResNet. Experimental results are presented to confirm that our system outperforms state-of-the-art methods in a representative indoor environment.


Sign in / Sign up

Export Citation Format

Share Document