scholarly journals SealedGRID: Secure and Interoperable Platform for Smart GRID Applications

Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5448
Author(s):  
George Suciu ◽  
Mari-Anais Sachian ◽  
Alexandru Vulpe ◽  
Marius Vochin ◽  
Aristeidis Farao ◽  
...  

Recent advancements in information and communication technologies (ICT) have improved the power grid, leading to what is known as the smart grid, which, as part of a critical economic and social infrastructure, is vulnerable to security threats from the use of ICT and new emerging vulnerabilities and privacy issues. Access control is a fundamental element of a security infrastructure, and security is based on the principles of less privilege, zero-trust, and segregation of duties. This work addresses how access control can be applied without disrupting the power grid’s functioning while also properly maintaining the security, scalability, and interoperability of the smart grid. The authentication in the platform presumes digital certificates using a web of trust. This paper presents the findings of the SealedGRID project, and the steps taken for implementing Attribute-based access control policies specifically customized to the smart grid. The outcome is to develop a novel, hierarchical architecture composed of different licensing entities that manages access to resources within the network infrastructure. They are based on well-drawn policy rules and the security side of these resources is placed through a context awareness module. Together with this technology, the IoT is used with Big Data (facilitating easy handling of large databases). Another goal of this paper is to present implementation and evaluations details of a secure and scalable security platform for the smart grid.

2019 ◽  
Vol 2 (S1) ◽  
Author(s):  
Filip Pröstl Andrén ◽  
Thomas I. Strasser ◽  
Jürgen Resch ◽  
Bernhard Schuiki ◽  
Sebastian Schöndorfer ◽  
...  

Abstract The massive deployment of distributed generators from renewable sources in recent years has led to a fundamental paradigm change in terms of planning and operation of the electric power system. The usage of advanced automation and information and communication technology is a key element to handle these new challenges and to turn the traditional power system into a smart grid. The implementation of such complex systems solutions is associated with increasing development complexity resulting in increased engineering costs. The traditional engineering methods used for power system automation were not intended to be used for applications of this scale and complexity. However, the usage of proper methods, automation architectures, and corresponding tools holds huge optimization potential for the engineering process. Therefore, this work presents a model-based engineering and validation support system, covering the overall engineering process for smart grid applications.


Author(s):  
Amani Abu Jabal ◽  
Elisa Bertino ◽  
Jorge Lobo ◽  
Mark Law ◽  
Alessandra Russo ◽  
...  

Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1817 ◽  
Author(s):  
Gisliany Alves ◽  
Danielle Marques ◽  
Ivanovitch Silva ◽  
Luiz Affonso Guedes ◽  
Maria da Guia da Silva

Smart grids are a new trend in electric power distribution, which has been guiding the digitization of electric ecosystems. These smart networks are continually being introduced in order to improve the dependability (reliability, availability) and efficiency of power grid systems. However, smart grids are often complex, composed of heterogeneous components (intelligent automation systems, Information and Communication Technologies (ICT) control systems, power systems, smart metering systems, and others). Additionally, they are organized under a hierarchical topology infrastructure demanded by priority-based services, resulting in a costly modeling and evaluation of their dependability requirements. This work explores smart grid modeling as a graph in order to propose a methodology for dependability evaluation. The methodology is based on Fault Tree formalism, where the top event is generated automatically and encompasses the hierarchical infrastructure, redundant features, load priorities, and failure and repair distribution rates of all components of a smart grid. The methodology is suitable to be applied in early design stages, making possible to evaluate instantaneous and average measurements of reliability and availability, as well as to identify eventual critical regions and components of smart grid. The study of a specific use-case of low-voltage distribution network is used for validation purposes.


Author(s):  
Miles H.F. Wen ◽  
Ka-Cheong Leung ◽  
Victor O.K. Li ◽  
Xingze He ◽  
C.-C. Jay Kuo

Concerns with global warming prompted many governments to mandate increased proportion of electricity generation from renewable sources. This, together with the desire to have more efficient and secure power generation and distribution, has driven research in the next-generation power grid, namely, the smart grid. Through integrating advanced information and communication technologies with power electronic and electric power technologies, smart grid will be highly reliable, efficient, and environmental-friendly. A key component of smart grid is the communication system. This paper explores the design goals and functions of the smart grid communication system, followed by an in-depth investigation on the communication requirements. Discussions on some of the recent developments related to smart grid communication systems are also introduced.


Author(s):  
Yagnik A Rathod

In compare to Authentication for identification and relationship of an identity of a user with its task and process within the system, authorization in access control is much anxious about confirming that user and its task in the form of system process, access to the assets of any particular domain is only approved when proven obedient to the identified policies. Access control and authorization is always an area of interest for researchers for enhancing security of critical assets from many decades. Our prime focus and interest is in the field of access control model based on Attribute base access control (ABAC) and with this paper we tried to integrate ABAC with openstack cloud for achieving finer level of granularity in access policies for domain like smart grid. Technical advancement of current era demands that critical infrastructure like traditional electrical grid open ups to the modern information and communication technology to get the benefit in terms of efficiency, scalability, accessibility and transparency for better adaptability in real world. Incorporation of ICT with electric grid makes it possible to do greater level of bi-directional interaction among stake holders like customer, generation units, distribution units and administrations and these leads international organization to contribute for standardization of smart grid concepts and technology so that the realization of smart grid becomes reality. Smart grid is a distributed system of very large scale by its nature and needs to integrate available legacy systems with its own security requirements. Cloud computing proven to be most efficient approach for said requirements and we have identified openstack as our cloud platform. We have integrated ABAC approach with default RBAC approach of openstack and provide a frame work that supports and integrate multiple access control polices in making authorization decisions. Smart grid domain in considered as case study which requires support of multiple access policies (RBAC, ABAC or DAC etc) with our model for access control and authorization.


2020 ◽  
Vol 15 ◽  

Effective usage of Information and Communication Technologies (ICT) has started with a paradigm shift in the energy management and functioning of the conventional power grid. It also aids in the maintenance of the complete information about consumer usage pattern, power storage, supply and regulation. Blending of information and communication technologies with energy management creates a smart grid environment which makes it move to the next horizon. The smart grid environment, uplifts renewable energy sources and brings out novel strategies in the energy market. The new functioning of the energy market attracts more utility companies for decentralized power generation and optimizes the power price for the consumer. The consumer plays an active role in the demand response modelling to maximize the welfare of the utility and to obtain the optimized price for their demand. In this paper, a novel demand response management scheme is proposed for multi-utility environment. The utility companies function in a peer to peer manner to communicate effectively and to select a specific utility from a set of utilities for the power supply. The selection of single utility is based on a non-cooperative game theory algorithm where the demand and generated power should be balanced to maximize the welfare of the utility and the residential consumers. The power price can be updated in an equal interval to allow all the utilities to participate in the Distributed Multi-Utility Demand Response Management (DMDRM) system. The simulated results justify that the distributed noncooperative game theory algorithm certainly maximizes the welfare of the utility companies and residential consumers.


Sign in / Sign up

Export Citation Format

Share Document