scholarly journals Design of Acoustic Bifocal Lenses Using a Fourier-Based Algorithm

Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8285
Author(s):  
José Miguel Fuster ◽  
Sergio Pérez-López ◽  
Pilar Candelas

In this work, we develop a new design method based on fast Fourier transform (FFT) for implementing zone plates (ZPs) with bifocal focusing profiles. We show that the FFT of the governing binary sequence provides a discrete sequence of the same length, which indicates the location of the main foci at the ZP focusing profile. Then, using reverse engineering and establishing a target focusing profile, we are capable of generating a binary sequence that provides a ZP with the desired focusing profile. We show that this design method, based on the inverse fast Fourier transform (IFFT), is very flexible and powerful and allows to tailor the design of bifocal ZPs to achieve focusing profiles with the desired foci locations and resolutions. The key advantage of our design algorithm, compared to other alternatives presented in previous works, is that our method provides bifocal focusing profiles with an absolute control of the foci locations. Moreover, although we analyze the performance of this novel design algorithm for underwater ultrasonics, it can also be successfully extended to different fields of physics, such as optics or microwaves, where ZPs are widely employed.

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Wenji Zhang ◽  
Ahmad Hoorfar ◽  
Christopher Thajudeen

A fast and efficient microwave tomographic algorithm is proposed for 2-D and 3-D real-time intrawall imaging. The exploding reflection model is utilized to simplify the imaging formulation, and the half-space Green’s function is expanded in the spectral domain to facilitate the easy implementation of the imaging algorithm with the fast Fourier transform (FFT) and inverse fast Fourier transform (IFFT). The linearization of the inversion scheme and employment of FFT/IFFT in the imaging formula make the algorithm suitable for various applications pertaining to the inspection of a large probed region and allow real-time processing. Representative numerical and experimental results are presented to show the effectiveness and efficiency of the proposed algorithm for real-time intrawall characterization.


Author(s):  
Kai Xue ◽  
Lei Li ◽  
Qiu Hong Li

A novel design method for stiffener layout of plate and shell structures is proposed in this paper. The method is inspired by the morphogenesis mechanism of dicotyledonous venation which is featured by hierarchy and functional adaptivity. It is expected that a optimal stiffener layout can be gradually achieved if the stiffeners extend by obeying a similar growth rule as the venation. Starting from the so called “seeds”, the stiffeners grow and branch off towards the direction that optimizes the structural performance. And the stiffeners with the minimum effectiveness to the structural performance are degenerated simultaneously. During the design process, the relative density of each element is treated as the design variable. The growth and degeneration of the stiffeners are determined by the nodal and elemental sensitivity numbers respectively. The design algorithm is programmed in Python and integrated with Abaqus software which is used as the FEA preprocessor and solver. To validate the effectiveness of the proposed method, it is applied to design the stiffener layouts of some typical structures with the objective of maximizing the overall stiffness with a volume constraint.


2012 ◽  
Vol 57 (5) ◽  
pp. 543-550 ◽  
Author(s):  
Eduard Krajník ◽  
Vincente Montesinos ◽  
Peter Zizler ◽  
Václav Zizler

Sign in / Sign up

Export Citation Format

Share Document