scholarly journals A Hash-Based Quantum-Resistant Chameleon Signature Scheme

Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8417
Author(s):  
P. Thanalakshmi ◽  
R. Anitha ◽  
N. Anbazhagan ◽  
Woong Cho ◽  
Gyanendra Prasad Joshi ◽  
...  

As a standard digital signature may be verified by anybody, it is unsuitable for personal or economically sensitive applications. The chameleon signature system was presented by Krawczyk and Rabin as a solution to this problem. It is based on a hash then sign model. The chameleon hash function enables the trapdoor information holder to compute a message digest collision. The holder of a chameleon signature is the recipient of a chameleon signature. He could compute collision on the hash value using the trapdoor information. This keeps the recipient from disclosing his conviction to a third party and ensures the privacy of the signature. The majority of the extant chameleon signature methods are built on the computationally infeasible number theory problems, like integer factorization and discrete log. Unfortunately, the construction of quantum computers would be rendered insecure to those schemes. This creates a solid requirement for construct chameleon signatures for the quantum world. Hence, this paper proposes a novel quantum secure chameleon signature scheme based on hash functions. As a hash-based cryptosystem is an essential candidate of a post-quantum cryptosystem, the proposed hash-based chameleon signature scheme would be a promising alternative to the number of theoretic-based methods. Furthermore, the proposed method is key exposure-free and satisfies the security requirements such as semantic security, non-transferability, and unforgeability.

2018 ◽  
Vol 5 (6) ◽  
pp. 180410 ◽  
Author(s):  
I. Stewart ◽  
D. Ilie ◽  
A. Zamyatin ◽  
S. Werner ◽  
M. F. Torshizi ◽  
...  

Quantum computers are expected to have a dramatic impact on numerous fields due to their anticipated ability to solve classes of mathematical problems much more efficiently than their classical counterparts. This particularly applies to domains involving integer factorization and discrete logarithms, such as public key cryptography. In this paper, we consider the threats a quantum-capable adversary could impose on Bitcoin, which currently uses the Elliptic Curve Digital Signature Algorithm (ECDSA) to sign transactions. We then propose a simple but slow commit–delay–reveal protocol, which allows users to securely move their funds from old (non-quantum-resistant) outputs to those adhering to a quantum-resistant digital signature scheme. The transition protocol functions even if ECDSA has already been compromised. While our scheme requires modifications to the Bitcoin protocol, these can be implemented as a soft fork.


2020 ◽  
Vol 25 (3) ◽  
pp. 275-280
Author(s):  
Daniel Zentai

AbstractPost-quantum (or quantum-resistant) cryptography refers to a set of cryptographic algorithms that are thought to remain secure even in the world of quantum computers. These algorithms are usually considered to be inefficient because of their big keys, or their running time. However, if quantum computers became a reality, security professionals will not have any other choice, but to use these algorithms. Lamport signature is a hash based one-time digital signature algorithm that is thought to be quantum-resistant. In this paper we will describe some simulation results related to the efficiency of the Lamport signature.


2017 ◽  
Vol 12 (1) ◽  
pp. 57
Author(s):  
Herdita Fajar Isnaini ◽  
Karyati Karyati

Tanda tangan digital dapat dijadikan sebagai salah satu cara untuk menjamin keaslian pesan atau informasi yang diterima. Salah satu skema yang dapat digunakan dalam membentuk tanda tangan adalah skema tanda tangan Schnorr. Skema tanda tangan ini berdasarkan pada masalah logaritma diskret. Skema ini memerlukan penggunaan fungsi hash yang akan menghasilkan nilai hash pesan untuk pembuatan tanda tangan, yang menjadi salah satu alasan keamanan dari skema ini. Skema tanda tangan Schnorr terdiri dari tiga proses, yaitu: pembentukan kunci, pembuatan tanda tangan serta verifikasi. Kajian ini akan membahas mengenai skema tanda tangan Schnorr dalam membentuk tanda tangan digital sebagai pengaman keaslian informasi, yang dibahas per prosesnya, meliputi: pembentukan kunci, pembuatan tanda tangan yang disertai perhitungan nilai hash serta verifikasi. Hasil dari kajian ini adalah didapatkan algoritma – algoritma dari skema tanda tangan Schnorr, yaitu algoritma pembentukan kunci publik dan kunci privat, algoritma pembuatan tanda tangan, serta algoritma verifikasi tanda tangan.Kata Kunci: tanda tangan digital, skema tanda tangan Schnorr, nilai hash, kunci publik, kunci privat. Implementation of Schnorr Signature Scheme in The Form of  Digital Signature AbstractDigital signature can be used as a way to ensure the authenticity of a received message or information. There is a scheme that can be used to form a signature called Schnorr signature scheme. This signature scheme is based on discrete logarithm problem. This scheme requires the use of hash function that will result to a message digest to form the signature, which is the reason of this scheme’s security. Schnorr signature scheme consists of three processes, namely: the key generation, signature formation, and verification. This study will discuss the Schnorr signature scheme in the form of digital signatures as a safeguard of an information’s authenticity, which is discussed process by process, including: the key generation, signature formation as well as the calculation of message digest and verification. The results of this study obtained algorithms - algorithms of Schnorr signature scheme, which is an algorithm of a public key and a private key generation, an algorithm of the signature formation, and an algorithm of signature verification.Keywords: digital signature, Schnorr signature scheme, message digest, public key, privat key


Author(s):  
Daniel Kales ◽  
Greg Zaverucha

Picnic is a digital signature algorithm designed to provide security against attacks by quantum computers. The design uses only symmetric-key primitives, and is an efficient instantiation of the MPC-in-the-head paradigm. In this work, we explore the Picnic design in great detail. We investigate and benchmark different parameter choices and show that there exist better parameter choices than those in the current specification. We also present improvements to the MPC protocol that shorten signatures and reduce signing time. The proposed MPC changes tailor the protocol to the circuit of interest in Picnic, but may also be of independent interest. Taken together, these changes give a new instantiation of Picnic that signs messages 7.9 to 13.9 times faster, and verifies signatures 4.5 to 5.5 times faster than the existing “Picnic2” design, while having nearly the same signature sizes.


2020 ◽  
Vol 4 ◽  
pp. 75-82
Author(s):  
D.Yu. Guryanov ◽  
◽  
D.N. Moldovyan ◽  
A. A. Moldovyan ◽  

For the construction of post-quantum digital signature schemes that satisfy the strengthened criterion of resistance to quantum attacks, an algebraic carrier is proposed that allows one to define a hidden commutative group with two-dimensional cyclicity. Formulas are obtained that describe the set of elements that are permutable with a given fixed element. A post-quantum signature scheme based on the considered finite non-commutative associative algebra is described.


Sign in / Sign up

Export Citation Format

Share Document