scholarly journals Rapid Test Method for Multi-Beam Profile of Phased Array Antennas

Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 47
Author(s):  
Qingchun Luo ◽  
Yantao Zhou ◽  
Yihong Qi ◽  
Pu Ye ◽  
Francesco de Paulis ◽  
...  

The measurement of the phased array antenna (PAA) is completely different from the traditional antenna, due to its multi beam patterns. Usually, each beam pattern of the PAA needs a separate measurement, which makes the overall time extremely long. Thus, the traditional method can no longer meet the efficiency and cost requirements of new PAA measurement. In this paper, a pattern reconstruction method is proposed which significantly reduce the measurement time of multi-beam PAAs. With the known array element patterns (AEP) and theoretical weighted port excitation of the beams, any beam pattern can be predicted by measuring only a certain beam pattern, due to the element excitation coefficient (including the matching, mutual coupling, and manufacturing factors, etc.) of the specific PAA being calculated. The approach has low reconstruction error in term of beam pointing accuracy, side lobe, and co-polar and cross-polar patterns while being validated for large scanning range. Through theoretical derivation and experiments, the effectiveness of the method is verified, and the testing efficiency of the phased array antenna can be improved by 10 times or even more.

Author(s):  
Qingchun Luo ◽  
Yantao zhou ◽  
Yihong Qi ◽  
Pu Ye ◽  
Francesco de Paulis ◽  
...  

The testing requirements of the active phased array antennas are very different from those of traditional passive antennas, due to its beam steering capability. Usually, each beam profile of the active phased array needs a separate radiation pattern test, which makes the overall testing time extremely long. Thus the traditional antenna test method can no longer meet the efficiency and cost requirements of new active phased array antennas test. In this paper, a fast test method tailored for phased array antennas is proposed that offers significantly reduced testing time at the expense of slight sacrifice of the accuracy. Using the simulated element pattern in array and ideal port excitation, the beam profile in any direction can be predicted by testing only a certain beam profile. Through theoretical derivation and experiments, the effectiveness of the method is verified, and the testing efficiency of the phased array antenna is demonstrated to be improved by ten times or even more.


2019 ◽  
pp. 19-23
Author(s):  
E. S. Parshina ◽  
K. Yu. Cheredeev

The paper describes an example of designing the radar’s side lobes cancellation system. It is based on the scheme of one channel interference canceler. The analysis of the antennas, which are ussually used in radar’s side lobes cancellation systems, is done, and active phased array antenna is chosen as an antenna of the radar’s side lobes cancellation system. The array pattern was formed by using antenna synthesis iterative method in order to fulfill the radar’s side lobes cancellation system’s antenna requirements. The antenna modeling results and its’ analysis are presented. The radar’s side lobes cancellation system with active phased array antenna eliminates intentional noise or impulse interference from any side lobe directions of the radar antenna.


2019 ◽  
Vol 9 (20) ◽  
pp. 4204 ◽  
Author(s):  
Hojoo Lee ◽  
Sungpeel Kim ◽  
Jaehoon Choi

In this paper, a 28 GHz fifth-generation (5G) phased array antenna with air-hole slots for beam width enhancement is proposed. The proposed antenna consists of eight dipole radiators on a mobile handset-sized ground with air-hole slots between the two adjacent elements for enhancing the half power beam width (HPBW) in the elevation plane. The dimensions of the proposed antenna are 130 mm × 42 mm × 0.127 mm. The proposed array antenna satisfies a −10 dB reflection coefficient in the frequency range from 27.2 to 29.2 GHz with a peak gain of 10.33 dBi and a side lobe level (SLL) of 13 dB. In addition to its good performance, the proposed antenna has a very wide HPBW (measured) in the elevation plane, up to 219 degree with a scan coverage of ±45 degree in the azimuth plane. The proposed antenna demonstrates excellent hemispheric beam coverage for 5G mobile handset devices and can enable cost-effective mass production.


Sign in / Sign up

Export Citation Format

Share Document