radar antenna
Recently Published Documents


TOTAL DOCUMENTS

376
(FIVE YEARS 78)

H-INDEX

18
(FIVE YEARS 3)

2021 ◽  
Vol 19 ◽  
pp. 179-184 ◽  
Author(s):  
Christian Schiffer ◽  
Andreas R. Diewald

Abstract. Radar signal processing is a promising tool for vital sign monitoring. For contactless observation of breathing and heart rate a precise measurement of the distance between radar antenna and the patient's skin is required. This results in the need to detect small movements in the range of 0.5 mm and below. Such small changes in distance are hard to be measured with a limited radar bandwidth when relying on the frequency based range detection alone. In order to enhance the relative distance resolution a precise measurement of the observed signal's phase is required. Due to radar reflections from surfaces in close proximity to the main area of interest the desired signal of the radar reflection can get superposed. For superposing signals with little separation in frequency domain the main lobes of their discrete Fourier transform (DFT) merge into a single lobe, so that their peaks cannot be differentiated. This paper evaluates a method for reconstructing the phase and amplitude of such superimposed signals.


2021 ◽  
Vol 9 (11) ◽  
pp. 1165
Author(s):  
Shuqin He ◽  
Hao Zhou ◽  
Yingwei Tian ◽  
Wei Shen

Ionospheric clutter is one of the main problems for high-frequency surface wave radars (HFSWRs), as it severely interferes with sea surface state monitoring and target detection. Although a number of methods exist for ionospheric clutter suppression, most are suitable for radars with a large-sized array and are inefficient for small-aperture radars. In this study, we added an auxiliary crossed-loop antenna to the original compact radar antenna, and used an adaptive filter to suppress the ionospheric clutter. The experimental results of the HFSWRs data indicated that the suppression factor of the ionospheric clutter was up to 20 dB. Therefore, the Bragg peaks that were originally submerged by the ionospheric clutters could be recovered, and the gaps in the current maps can, to a large extent, be filled. For an oceanographic radar, the purpose of suppressing ionospheric clutter is to extract an accurate current speed; the radial current fields that were generated by our method showed an acceptable agreement with those generated by GlobCurrent data. This result supports the notion that the ionospheric suppression technique does not compromise the estimation of radial currents. The proposed method is particularly efficient for a compact HFSWRs, and can also be easily used in other types of antennas.


2021 ◽  
Vol 71 (5) ◽  
pp. 670-681
Author(s):  
Krishnendu Raha ◽  
K. P. Ray

This review paper is an effort to develop insight into the development in antennas for through wall imaging radar application. Review on literature on antennas for use in through wall imaging radar, fulfilling one or more requirements/specifications such as ultrawide bandwidth, stable and high gain, stable unidirectional radiation pattern, wide scanning angle, compactness ensuring portability and facilitating real-time efficient and simple imaging is presented. The review covers variants of Vivaldi, Bow tie, Horn, Spiral, Patch and Magneto-electric dipole antennas demonstrated as suitable antennas for the through wall imaging radar application. With an aim to open new research avenues for making better through wall imaging radar antenna, review on relevant compressive reflector antennas, surface integrated waveguide antennas, plasma antennas, metamaterial antennas and single frequency dynamically configurable meta-surface antennas are incorporated. The review paper brings out possibilities of designing an optimum through wall imaging radar antenna and prospects of future research on the antenna to improve radiation pattern and facilitate overall simple and efficient imaging by the through wall imaging radar.


Sign in / Sign up

Export Citation Format

Share Document