scholarly journals A Real-Time Wearable Physiological Monitoring System for Home-Based Healthcare Applications

Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 104
Author(s):  
Jin-Woo Jeong ◽  
Woochan Lee ◽  
Young-Joon Kim

The acquisition of physiological data are essential to efficiently predict and treat cardiac patients before a heart attack occurs and effectively expedite motor recovery after a stroke. This goal can be achieved by using wearable wireless sensor network platforms for real-time healthcare monitoring. In this paper, we present a wireless physiological signal acquisition device and a smartphone-based software platform for real-time data processing and monitor and cloud server access for everyday ECG/EMG signal monitoring. The device is implemented in a compact size (diameter: 30 mm, thickness: 4.5 mm) where the biopotential is measured and wirelessly transmitted to a smartphone or a laptop for real-time monitoring, data recording and analysis. Adaptive digital filtering is applied to eliminate any interference noise that can occur during a regular at-home environment, while minimizing the data process time. The accuracy of ECG and EMG signal coverage is assessed using Bland–Altman analysis by comparing with a reference physiological signal acquisition instrument (RHS2116 Stim/Recording System, Intan). Signal coverage of R-R peak intervals showed almost identical outcome between this proposed work and the RHS2116, showing a mean difference in heart rate of 0.15 4.65 bpm and a Wilcoxon’s p value of 0.133. A 24 h continuous recording session of ECG and EMG is conducted to demonstrate the robustness and stability of the device based on extended time wearability on a daily routine.

Author(s):  
Junbai Pan ◽  
Yangong Zheng ◽  
Jinkai Jin ◽  
Xiang Cai ◽  
Chencheng Wang

In view of the shortcomings of the current wearable human body sensor, such as poor comfort and low sensing accuracy, the application of semiconductor nano materials in the reconstruction of wearable human body sensor is studied. The best zinc concentration of 10 mm and the best reaction temperature of 75∘C were selected as experimental conditions to prepare the modified silk. The two ends of the silk sensor were connected by silver glue and wire respectively to form a single silk sensor. The sensor is placed in the wearable clothing of the wearable human body sensor, which uses the sensor to sense the physiological signal of human body and sends it to the control center. The central processing unit of the control center uses the data eigenvalue fusion decision-making method of BP neural network to process the physiological data of human body and then transmits it to the display terminal to realize the physiological data induction of human body. The experimental results show that the human body sensor can effectively sense human heart rate, blood oxygen signal, blood pressure and other physiological signals, and the sensing accuracy is above 97%.


1999 ◽  
Vol 32 (2) ◽  
pp. 443-448
Author(s):  
Suttipan Limanond ◽  
Jennie Si

Sign in / Sign up

Export Citation Format

Share Document