scholarly journals Multistage Centrifugal Pump Fault Diagnosis Using Informative Ratio Principal Component Analysis

Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 179
Author(s):  
Zahoor Ahmad ◽  
Tuan-Khai Nguyen ◽  
Sajjad Ahmad ◽  
Cong Dai Nguyen ◽  
Jong-Myon Kim

This study proposes a fault diagnosis method (FD) for multistage centrifugal pumps (MCP) using informative ratio principal component analysis (Ir-PCA). To overcome the interference and background noise in the vibration signatures (VS) of the centrifugal pump, the fault diagnosis method selects the fault-specific frequency band (FSFB) in the first step. Statistical features in time, frequency, and wavelet domains were extracted from the fault-specific frequency band. In the second step, all of the extracted features were combined into a single feature vector called a multi-domain feature pool (MDFP). The multi-domain feature pool results in a larger dimension; furthermore, not all of the features are best for representing the centrifugal pump condition and can affect the condition classification accuracy of the classifier. To obtain discriminant features with low dimensions, this paper introduces a novel informative ratio principal component analysis in the third step. The technique first assesses the feature informativeness towards the fault by calculating the informative ratio between the feature within the class scatteredness and between-class distance. To obtain a discriminant set of features with reduced dimensions, principal component analysis was applied to the features with a high informative ratio. The combination of informative ratio-based feature assessment and principal component analysis forms the novel informative ratio principal component analysis. The new set of discriminant features obtained from the novel technique are then provided to the K-nearest neighbor (K-NN) condition classifier for multistage centrifugal pump condition classification. The proposed method outperformed existing state-of-the-art methods in terms of fault classification accuracy.

2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Zihan Wang ◽  
Chenglin Wen ◽  
Xiaoming Xu ◽  
Siyu Ji

Principal component analysis (PCA) is widely used in fault diagnosis. Because the traditional data preprocessing method ignores the correlation between different variables in the system, the feature extraction is not accurate. In order to solve it, this paper proposes a kind of data preprocessing method based on the Gap metric to improve the performance of PCA in fault diagnosis. For different types of faults, the original dataset transformation through Gap metric can reflect the correlation of different variables of the system in high-dimensional space, so as to model more accurately. Finally, the feasibility and effectiveness of the proposed method are verified through simulation.


2015 ◽  
Vol 731 ◽  
pp. 395-400 ◽  
Author(s):  
Qian Qian Xu ◽  
Hai Yan Zhang ◽  
He Ping Hou ◽  
Zhuo Fei Xu

The printing machine is a sort of large-scale equipment characterized by high speed and precision. A fault diagnosis method based on kernel principal component analysis (KPCA) and K-means clustering is developed to classify the types of feeding fault. The multidimensional and nonlinear data of printed image could be reduced by KPCA to make up the deficiency of the traditional K-means clustering method. In this paper, it is experimentally verified that the classification accuracy of the combined method is higher than the traditional clustering analysis method in feeding fault detection and diagnosis. This method provides a shortcut for the determination of fault sources and realizes multi-faults diagnosis of printing machinery efficiently


Sign in / Sign up

Export Citation Format

Share Document