scholarly journals Sensitive Metal-Semiconductor Nanothermocouple Fabricated by FIB to Investigate Laser Beams with Nanometer Spatial Resolution

Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 287
Author(s):  
Adam Łaszcz ◽  
Andrzej Czerwinski ◽  
Emilia Pruszyńska-Karbownik ◽  
Marek Wzorek ◽  
Dariusz Szmigiel

The focused ion beam (FIB) technique was used to fabricate a nanothermocouple (with a 90 nm wide nanojunction) based on a metal–semiconductor (Pt–Si) structure, which showed a sensitivity up to 10 times larger (with Seebeck coefficient up to 140 µV/K) than typical metal–metal nanothermocouples. In contrast to the fabrication of nanothermocouples which requires a high-tech semiconductor manufacturing line with sophisticated fabrication techniques, environment, and advanced equipment, FIB systems are available in many research laboratories without the need for a high-tech environment, and the described processing is performed relatively quickly by a single operator. The linear response of the manufactured nanothermocouple enabled sensitive measurements even with small changes of temperature when heated with a stream of hot air. A nonlinear response of the nanothermocouple (up to 83.85 mV) was observed during the exposition to an argon-laser beam with a high optical power density (up to 17.4 Wcm−2), which was also used for the laser annealing of metal–semiconductor interfaces. The analysis of the results implies the application of such nanothermocouples, especially for the characterization of laser beams with nanometer spatial resolution. Improvements of the FIB processing should lead to an even higher Seebeck coefficient of the nanothermocouples; e.g., in case of the availability of other suitable metal sources (e.g., Cr).

Author(s):  
Dietmar Vogel ◽  
Astrid Gollhardt ◽  
Bernd Michel

Three different methods of stress measurement with strong spatial resolution are presented. They base on stress relief techniques caused by focused ion beam milling, on altered electron backscattering by deformed lattices and on Stokes line shift measurements by Raman spectroscopy. The capability of these methods is demonstrated by their application to typical MEMS structures. A comparison between the methods is performed in order to outline potentials and limitations.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Carolin Haug ◽  
Gerd Mayer ◽  
Verena Kutschera ◽  
Dieter Waloszek ◽  
Andreas Maas ◽  
...  

We give an overview of available techniques for imaging and documenting applied to gammarideans and discuss their advantages and disadvantages. Although recent techniques, such as confocal laser scanning microscopy (cLSM), focused ion beam scanning electron microscopy (FIB SEM), or computed microtomography (μCT), provide new possibilities to detect and document structures, these high-tech devices are expensive, and access to them is often limited. Alternatively, there are many possibilities to enhance the capabilities of established techniques such as macrophotography and light microscopy. We discuss improvements of the illumination with polarized light and the possibilities of utilizing the autofluorescence of animals such as the gammarideans. In addition, we present software-based enhancing tools such as image fusion and image stitching.


2001 ◽  
Author(s):  
Markus Vitzethum ◽  
Martin Ruff ◽  
Ralf Schmidt ◽  
Peter Kiesel ◽  
S. Malzer ◽  
...  

2010 ◽  
Vol 1248 ◽  
Author(s):  
R. Carles ◽  
C. Farcau ◽  
G. Benassayag ◽  
C. Bonafos ◽  
P. Benzo ◽  
...  

AbstractWe have developed a novel strategy for elaborating composite plasmonic nanomaterials in a well controlled manner. Combining several techniques commonly used in microelectronic engineering, namely sputtering deposition, thermal oxidation, ultra low energy ion implantation, focused ion beam lithography, thermal or laser annealing, we have obtained 3D patterned optical layers. Their spatial and spectral responses take benefit of optical interference, plasmonic resonance effects and coupling between excitations in both near and far field regime. Moreover these structures show high level of uniformity, reproducibility and stability, and they preserve flat and chemically uniform surfaces.


2012 ◽  
Vol 1428 ◽  
Author(s):  
Sven Rzepka ◽  
Dietmar Vogel ◽  
Ellen Auerswald ◽  
Bernd Michel

ABSTRACTThe fibDAC stress analysis method, a new tool for local stress measurement, has been applied to patterned BEoL structures after being validated at complete films by established industrial methods like wafer bow measurement. The new tool uses focused ion beam (FIB) to mill a narrow trench of down to 30 nm width into the surface of the structure under investigation to trigger stress relief in its vicinity. Capturing the corresponding deformation by high resolution SEM micrographs and local digital image correlation, the original stress can be determined by simulating the stress relief process by automated finite element analyses. Simultaneously, the extraction of key material parameters of the film like Young’s modulus and Poisson’s ratio is possible.The spatial resolution of the fibDAC stress analysis method is 1 μm and better. It has been demonstrated at arrays of BEoL interconnects. The magnitude of the local stresses inside the metal traces has been shown to be substantially different to those occurring in the dielectrics between the lines. Such a spatial resolution clearly outperforms all established industrial methods.


Sign in / Sign up

Export Citation Format

Share Document