Localized High-Resolution Stress Measurements on MEMS Structures

Author(s):  
Dietmar Vogel ◽  
Astrid Gollhardt ◽  
Bernd Michel

Three different methods of stress measurement with strong spatial resolution are presented. They base on stress relief techniques caused by focused ion beam milling, on altered electron backscattering by deformed lattices and on Stokes line shift measurements by Raman spectroscopy. The capability of these methods is demonstrated by their application to typical MEMS structures. A comparison between the methods is performed in order to outline potentials and limitations.

2012 ◽  
Vol 1428 ◽  
Author(s):  
Sven Rzepka ◽  
Dietmar Vogel ◽  
Ellen Auerswald ◽  
Bernd Michel

ABSTRACTThe fibDAC stress analysis method, a new tool for local stress measurement, has been applied to patterned BEoL structures after being validated at complete films by established industrial methods like wafer bow measurement. The new tool uses focused ion beam (FIB) to mill a narrow trench of down to 30 nm width into the surface of the structure under investigation to trigger stress relief in its vicinity. Capturing the corresponding deformation by high resolution SEM micrographs and local digital image correlation, the original stress can be determined by simulating the stress relief process by automated finite element analyses. Simultaneously, the extraction of key material parameters of the film like Young’s modulus and Poisson’s ratio is possible.The spatial resolution of the fibDAC stress analysis method is 1 μm and better. It has been demonstrated at arrays of BEoL interconnects. The magnitude of the local stresses inside the metal traces has been shown to be substantially different to those occurring in the dielectrics between the lines. Such a spatial resolution clearly outperforms all established industrial methods.


1991 ◽  
Vol 254 ◽  
Author(s):  
R. Clampitt ◽  
G. G. Ross ◽  
M. Phelan ◽  
S. A. Davies

AbstractImprovements in specimen preparation for TEM analysis are being constantly sought, particularly in the study of microelectronics' materials and in failure analysis of devices. We describe here a compact commercial system capable of thinning (milling) selected regions of a specimen by means of a scanned focused ion beam of sub-micron spatial resolution.


Author(s):  
Becky Holdford

Abstract On mechanically polished cross-sections, getting a surface adequate for high-resolution imaging is sometimes beyond the analyst’s ability, due to material smearing, chipping, polishing media chemical attack, etc.. A method has been developed to enable the focused ion beam (FIB) to re-face the section block and achieve a surface that can be imaged at high resolution in the scanning electron microscope (SEM).


Author(s):  
Po Fu Chou ◽  
Li Ming Lu

Abstract Dopant profile inspection is one of the focused ion beam (FIB) physical analysis applications. This paper presents a technique for characterizing P-V dopant regions in silicon by using a FIB methodology. This technique builds on published work for backside FIB navigation, in which n-well contrast is observed. The paper demonstrates that the technique can distinguish both n- and p-type dopant regions. The capability for imaging real sample dopant regions on current fabricated devices is also demonstrated. SEM DC and FIB DC are complementary methodologies for the inspection of dopants. The advantage of the SEM DC method is high resolution and the advantage of FIB DC methodology is high contrast, especially evident in a deep N-well region.


2002 ◽  
Vol 81 (5) ◽  
pp. 865-867 ◽  
Author(s):  
G. N. Phillips ◽  
M. Siekman ◽  
L. Abelmann ◽  
J. C. Lodder

2011 ◽  
Vol 17 (6) ◽  
pp. 983-990 ◽  
Author(s):  
Hosni Idrissi ◽  
Stuart Turner ◽  
Masatoshi Mitsuhara ◽  
Binjie Wang ◽  
Satoshi Hata ◽  
...  

AbstractFocused ion beam (FIB) induced damage in nanocrystalline Al thin films has been characterized using advanced transmission electron microscopy techniques. Electron tomography was used to analyze the three-dimensional distribution of point defect clusters induced by FIB milling, as well as their interaction with preexisting dislocations generated by internal stresses in the Al films. The atomic structure of interstitial Frank loops induced by irradiation, as well as the core structure of Frank dislocations, has been resolved with aberration-corrected high-resolution annular dark-field scanning TEM. The combination of both techniques constitutes a powerful tool for the study of the intrinsic structural properties of point defect clusters as well as the interaction of these defects with preexisting or deformation dislocations in irradiated bulk or nanostructured materials.


Sign in / Sign up

Export Citation Format

Share Document