scholarly journals A Lab-on-a-Chip Based Automatic Platform for Continuous Nitrites Sensing in Aquaculture

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 444
Author(s):  
Alexandro Catini ◽  
Rosamaria Capuano ◽  
Giuseppe Tancredi ◽  
Giulio Dionisi ◽  
Davide Di Giuseppe ◽  
...  

In aquaculture, the density of fish stock, use of feeding, and surrounding environmental conditions can easily result in an excessive concentration of harmful compounds that require continuous monitoring. Chemical sensors are available for most of these compounds, however, operative conditions and continuous monitoring in water make the development of sensors suitable for long and unattended deployments difficult. A possible solution is the development of engineered automatic labs where the uptake of sample and the contact with water is reduced and the use of a minimal quantity of reagents enables the implementation of reliable chemical assays. In this paper, a platform for automatic chemical assays is presented. The concept is demonstrated with the detection of nitrites based on the well-known colorimetric Griess reaction. The platform is centered around a lab-on-a-chip where reagents and water samples are mixed. The color of the reaction product is measured with low-cost optoelectronic components. Results show the feasibility of the approach with a minimum detectable concentration of about 0.1 mg/L which is below the tolerance level for aquaculture farms.

Biosensors ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 247
Author(s):  
Miaomiao Chen ◽  
Chunhua Zhang ◽  
Zhiqing Hu ◽  
Zhuo Li ◽  
Menglin Li ◽  
...  

The JAK2 V617F mutation is a major diagnostic, therapeutic, and monitoring molecular target of Philadelphia-negative myeloproliferative neoplasms (MPNs). To date, numerous methods of detecting the JAK2 V617F mutation have been reported, but there is no gold-standard diagnostic method for clinical applications. Here, we developed and validated an efficient Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR associated protein 12a (Cas12a)-based assay to detect the JAK2 V617F mutation. Our results showed that the sensitivity of the JAK2 V617F/Cas12a fluorescence detection system was as high as 0.01%, and the JAK2 V617F/Cas12a lateral flow strip assay could unambiguously detect as low as 0.5% of the JAK2 V617F mutation, which was much higher than the sensitivity required for clinical application. The minimum detectable concentration of genomic DNA achieved was 0.01 ng/μL (~5 aM, ~3 copies/μL). In addition, the whole process only took about 1.5 h, and the cost of an individual test was much lower than that of the current assays. Thus, our methods can be applied to detect the JAK2 V617F mutation, and they are highly sensitive, rapid, cost-effective, and convenient.


2012 ◽  
Vol 102 (2) ◽  
pp. S22-S27
Author(s):  
David A. King ◽  
Nickolas Altic ◽  
Colt Greer

2015 ◽  
Author(s):  
Rainer Gransee ◽  
Tristan Schneider ◽  
Deniz Elyorgun ◽  
Xenia Strobach ◽  
Tobias Schunck ◽  
...  

2005 ◽  
Vol 49 (8) ◽  
pp. 3569-3571 ◽  
Author(s):  
GholamAli Khoschsorur ◽  
Franz Fruehwirth ◽  
Sieglinde Zelzer

ABSTRACT A simple, specific method is presented for simultaneous determination of voriconazole and itraconazole and its metabolite, hydroxyitraconazole, in human serum using one-step liquid-liquid extraction and high-performance liquid chromatography. Linearity tests ranged from 0.1 to 8.0 μg/ml; the minimum detectable concentration was 0.03 μg/ml.


2018 ◽  
Vol 7 (2.8) ◽  
pp. 419
Author(s):  
K Geetha ◽  
P Prabha ◽  
C Preetha Devi ◽  
S Priyadharshini ◽  
S Tamilselvan

Now a days, Industries are more equipped with automatic system. Fire monitoring is one of the applications where continuous monitoring of temperature and humidity is essential to detect the fire in the industry. Fire detection is very much necessary to protect both the industry and to conserve environment and livelihood of human. This paper presents an algorithm to detect the fire in the industry based on ZigBee and GPRS wireless sensor network which provides low cost, low maintenance and good quality service when compared with the traditional method. The hardware circuitry of proposed solution is based on microcontroller, temperature sensor along with ZigBee and GPRS modules.


2021 ◽  
Author(s):  
Elias Dimitriou ◽  
Georgios Poulis ◽  
Anastasios Papadopoulos

<p>Good water quality status in rivers and lakes is vital for both human well-being and biodiversity conservation and requires efficient monitoring and restoration strategies. This is reflected in an increasing number of International and National legislations which enforce water resources management and monitoring at a basin scale.</p><p>For this purpose, state-of-the-art monitoring schemes have been developed by using low-cost, technologically advanced sensors and Internet of Things (IoT) infrastructure. Remote sensing offers also a good water monitoring alternative but is more appropriate for medium to large water bodies with less dynamic character in comparison to small scale, temporary rivers.</p><p>Recent technological advances in sensors technology, energy supply, telecommunication protocols and data handling, facilitate the use of automated monitoring stations, but still, deployment of extended networks with readily available data remains far from common practice. Installation and operational costs for the development of such monitoring networks are among the most commonly faced challenges.</p><p>The main aim of this effort is to present the development of a network of automatic monitoring stations that measure in near real time water level and physicochemical parameters in several Greek rivers. This infrastructure has been developed under the project “Open ELIoT” (Open Internet of Things infrastructure for online environmental services - https://www.openeliot.com/en/), which was funded by the Greek National Structural Funds. It includes a low cost and easy to produce hardware node, coupled with commercial sensors of industrial specifications, as well as an IoT data platform, elaborating and presenting data, based on open technologies.</p><p>During its initial operation phase, the system has been deployed in sites with different hydrological regimes and various pressures to water quality, including (a) an urban Mediterranean stream (Pikrodafni stream), and (b) the urban part of a continental river running through an agricultural area (Lithaios stream).</p><p>Preliminary data on the continuous monitoring of sites (a) and (b) are presented here, reflecting the differences in pressures to the respective water bodies. Pikrodafni stream which is located close to the center of Athens – Greece and receives a lot of pressure from urban waste, illustrates Dissolved Oxygen (DO) concentration with a heavily skewed distribution towards low values (mean value: 2.15 mg/l and median: 0.93 mg/l). On the contrary, in Lithaios stream, which is more affected by agricultural runoff, dissolved oxygen data approach a normal distribution (mean value: 6.93 mg/l and median: 7.03 mg/l). The 25<sup>th</sup> and 75<sup>th</sup> percentiles in Pikrodafni stream are: 0.1 mg/l and 3.47 mg/l respectively while in Lithaios stream are: 5.6 mg/l and 8.45 mg/l. The average water temperature is similar to both streams (18.8 oC in Pikrodafni and 16.2 oC in Lithaios). Therefore, the significant differences in DO concentrations between the two streams indicate the need for continuous monitoring of data that facilitates the identification of pressures and enables stakeholders to respond to pollution events in time.</p>


2021 ◽  
Author(s):  
Md. Fazlay Rubby ◽  
Varsha Namboodiri ◽  
Mohammad Salman Parvez ◽  
Nazmul Islam

Sensors ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 289 ◽  
Author(s):  
Davide Notti ◽  
Alberto Cina ◽  
Ambrogio Manzino ◽  
Alessio Colombo ◽  
Iosif Horea Bendea ◽  
...  

In recent years, the development of low-cost GNSS sensors allowed monitoring in a continuous way movement related to natural processes like landslides with increasing accuracy and limited efforts. In this work, we present the first results of an experimental low-cost GNSS continuous monitoring applied to an unstable slope affecting the Madonna del Sasso Sanctuary (NW Italy). The courtyard of Sanctuary is built on two unstable blocks delimited by a high cliff. Previous studies and non-continuous monitoring showed that blocks suffer a seasonal cycle of thermal expansion and a long-term trend to downslope a few millimeters (2/3) per year. The presence of a continuous monitoring solution could be an essential help to better understand the kinematics of unstable slope. Continuous monitoring could help to forecast a possible paroxysm phase that could end with a failure of the unstable area. The first year of experimental measurements shows a millimetric accuracy of low-cost GNSS, and the long-term trend is in agreement with other monitoring data. We also propose a methodological approach that considers the use of semi-automatized procedures for the identification of anomalous trends and a risk communication strategy. Pro and cons of the proposed methodology are also discussed.


Sign in / Sign up

Export Citation Format

Share Document