scholarly journals Evaluation of the Convergence Region of an Automated Registration Method for 3D Laser Scanner Point Clouds

Sensors ◽  
2009 ◽  
Vol 9 (1) ◽  
pp. 355-375 ◽  
Author(s):  
Kwang-Ho Bae
2020 ◽  
Vol 12 (7) ◽  
pp. 1127
Author(s):  
Nadisson Luis Pavan ◽  
Daniel Rodrigues dos Santos ◽  
Kourosh Khoshelham

Registration of point clouds is a central problem in many mapping and monitoring applications, such as outdoor and indoor mapping, high-speed railway track inspection, heritage documentation, building information modeling, and others. However, ensuring the global consistency of the registration is still a challenging task when there are multiple point clouds because the different scans should be transformed into a common coordinate frame. The aim of this paper is the registration of multiple terrestrial laser scanner point clouds. We present a plane-based matching algorithm to find plane-to-plane correspondences using a new parametrization based on complex numbers. The multiplication of complex numbers is based on analysis of the quadrants to avoid the ambiguity in the calculation of the rotation angle formed between normal vectors of adjacent planes. As a matching step may contain several matrix operations, our strategy is applied to reduce the number of mathematical operations. We also design a novel method for global refinement of terrestrial laser scanner data based on plane-to-plane correspondences. The rotation parameters are globally refined using operations of quaternion multiplication, while the translation parameters are refined using the parameters of planes. The global refinement is done non-iteratively. The experimental results show that the proposed plane-based matching algorithm efficiently finds plane correspondences in partial overlapping scans providing approximate values for the global registration, and indicate that an accuracy better than 8 cm can be achieved by using our global fine plane-to-plane registration method.


2015 ◽  
Vol 75 (10) ◽  
Author(s):  
Mohd Azwan Abbas ◽  
Halim Setan ◽  
Zulkepli Majid ◽  
Albert K. Chong ◽  
Lau Chong Luh ◽  
...  

Currently, coarse registration methods for scanner are required heavy operator intervention either before or after scanning process. There also have an automatic registration method but only applicable to a limited class of objects (e.g. straight lines and flat surfaces). This study is devoted to a search of a computationally feasible automatic coarse registration method with a broad range of applicability. Nowadays, most laser scanner systems are supplied with a camera, such that the scanned data can also be photographed. The proposed approach will exploit the invariant features detected from image to associate point cloud registration. Three types of detectors are included: scale invariant feature transform (SIFT), 2) Harris affine, and 3) maximally stable extremal regions (MSER). All detected features will transform into the laser scanner coordinate system, and their performance is measured based on the number of corresponding points. Several objects with different observation techniques were performed to evaluate the capability of proposed approach and also to evaluate the performance of selected detectors.  


Author(s):  
D. R. dos Santos ◽  
F. P. Freiman ◽  
N. L. Pavan

<p><strong>Abstract.</strong> Terrestrial laser scanner (TLS) sensor captures highly dense and accurate point clouds quite useful for indoor and outdoor mapping, navigation, 3D reconstruction, surveillance, industrial projects, infrastructure management, and others. In this paper, we present a global registration method that weights the sensor poses for refinement of TLS data registration. Our global refinement method assumes that the variance-covariance matrix that describes the uncertainty of sensor poses is available to refine the registration errors. The effectiveness of the proposed method is demonstrated with TLS dataset obtained into outdoor environment. Our results show that the weighting the sensor poses obtained in registration task improves the positional accuracy of TLS sensor.</p>


2021 ◽  
Vol 906 (1) ◽  
pp. 012078
Author(s):  
Zbigniew Muszyński ◽  
Paulina Kujawa

Abstract Terrestrial laser scanning (TLS) is a measurement technique used for many geodetic applications (such as determination of displacement and deformation of building objects or monitoring of engineering structures) as well as for non-geodetic applications (for example in forestry, archeology or geotechnics). Despite the high level of automation, the measurement with a laser scanner and the processing of the results consist of many stages and depend on many factors. The most important factors are: the features of measurement object (size, material, availability), required accuracy, speed of scanning, required scan density, type of reference frame, registration method, planned visualization, and 3D modelling method. In this article, the authors focused on the type of registration technique of point clouds obtained from TLS. The most popular strategies of registration were discussed. The practical application of the selected technique was presented on the example of measurement of the railway gauge of the viaduct. Due to the characteristic object (narrow and long railway line) and considering the local reference frame of point clouds as well as the need of minimization of the measurement time, the hybrid registration method in the nested variant was selected.


2016 ◽  
Vol 10 (2) ◽  
pp. 163-171 ◽  
Author(s):  
Takuma Watanabe ◽  
◽  
Takeru Niwa ◽  
Hiroshi Masuda ◽  

We proposed a registration method for aligning short-range point-clouds captured using a portable laser scanner (PLS) to a large-scale point-cloud captured using a terrestrial laser scanner (TLS). As a PLS covers a very limited region, it often fails to provide sufficient features for registration. In our method, the system analyzes large-scale point-clouds captured using a TLS and indicates candidate regions to be measured using a PLS. When the user measures a suggested region, the system aligns the captured short-range point-cloud to the large-scale point-cloud. Our experiments show that the registration method can adequately align point-clouds captured using a TLS and a PLS.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2431
Author(s):  
Yongjian Fu ◽  
Zongchun Li ◽  
Wenqi Wang ◽  
Hua He ◽  
Feng Xiong ◽  
...  

To overcome the drawbacks of pairwise registration for mobile laser scanner (MLS) point clouds, such as difficulty in searching the corresponding points and inaccuracy registration matrix, a robust coarse-to-fine registration method is proposed to align different frames of MLS point clouds into a common coordinate system. The method identifies the correct corresponding point pairs from the source and target point clouds, and then calculates the transform matrix. First, the performance of a multiscale eigenvalue statistic-based descriptor with different combinations of parameters is evaluated to identify the optimal combination. Second, based on the geometric distribution of points in the neighborhood of the keypoint, a weighted covariance matrix is constructed, by which the multiscale eigenvalues are calculated as the feature description language. Third, the corresponding points between the source and target point clouds are estimated in the feature space, and the incorrect ones are eliminated via a geometric consistency constraint. Finally, the estimated corresponding point pairs are used for coarse registration. The value of coarse registration is regarded as the initial value for the iterative closest point algorithm. Subsequently, the final fine registration result is obtained. The results of the registration experiments with Autonomous Systems Lab (ASL) Datasets show that the proposed method can accurately align MLS point clouds in different frames and outperform the comparative methods.


2021 ◽  
Vol 13 (11) ◽  
pp. 2195
Author(s):  
Shiming Li ◽  
Xuming Ge ◽  
Shengfu Li ◽  
Bo Xu ◽  
Zhendong Wang

Today, mobile laser scanning and oblique photogrammetry are two standard urban remote sensing acquisition methods, and the cross-source point-cloud data obtained using these methods have significant differences and complementarity. Accurate co-registration can make up for the limitations of a single data source, but many existing registration methods face critical challenges. Therefore, in this paper, we propose a systematic incremental registration method that can successfully register MLS and photogrammetric point clouds in the presence of a large number of missing data, large variations in point density, and scale differences. The robustness of this method is due to its elimination of noise in the extracted linear features and its 2D incremental registration strategy. There are three main contributions of our work: (1) the development of an end-to-end automatic cross-source point-cloud registration method; (2) a way to effectively extract the linear feature and restore the scale; and (3) an incremental registration strategy that simplifies the complex registration process. The experimental results show that this method can successfully achieve cross-source data registration, while other methods have difficulty obtaining satisfactory registration results efficiently. Moreover, this method can be extended to more point-cloud sources.


2021 ◽  
Vol 13 (13) ◽  
pp. 2494
Author(s):  
Gaël Kermarrec ◽  
Niklas Schild ◽  
Jan Hartmann

T-splines have recently been introduced to represent objects of arbitrary shapes using a smaller number of control points than the conventional non-uniform rational B-splines (NURBS) or B-spline representatizons in computer-aided design, computer graphics and reverse engineering. They are flexible in representing complex surface shapes and economic in terms of parameters as they enable local refinement. This property is a great advantage when dense, scattered and noisy point clouds are approximated using least squares fitting, such as those from a terrestrial laser scanner (TLS). Unfortunately, when it comes to assessing the goodness of fit of the surface approximation with a real dataset, only a noisy point cloud can be approximated: (i) a low root mean squared error (RMSE) can be linked with an overfitting, i.e., a fitting of the noise, and should be correspondingly avoided, and (ii) a high RMSE is synonymous with a lack of details. To address the challenge of judging the approximation, the reference surface should be entirely known: this can be solved by printing a mathematically defined T-splines reference surface in three dimensions (3D) and modeling the artefacts induced by the 3D printing. Once scanned under different configurations, it is possible to assess the goodness of fit of the approximation for a noisy and potentially gappy point cloud and compare it with the traditional but less flexible NURBS. The advantages of T-splines local refinement open the door for further applications within a geodetic context such as rigorous statistical testing of deformation. Two different scans from a slightly deformed object were approximated; we found that more than 40% of the computational time could be saved without affecting the goodness of fit of the surface approximation by using the same mesh for the two epochs.


2021 ◽  
Vol 5 (1) ◽  
pp. 59
Author(s):  
Gaël Kermarrec ◽  
Niklas Schild ◽  
Jan Hartmann

Terrestrial laser scanners (TLS) capture a large number of 3D points rapidly, with high precision and spatial resolution. These scanners are used for applications as diverse as modeling architectural or engineering structures, but also high-resolution mapping of terrain. The noise of the observations cannot be assumed to be strictly corresponding to white noise: besides being heteroscedastic, correlations between observations are likely to appear due to the high scanning rate. Unfortunately, if the variance can sometimes be modeled based on physical or empirical considerations, the latter are more often neglected. Trustworthy knowledge is, however, mandatory to avoid the overestimation of the precision of the point cloud and, potentially, the non-detection of deformation between scans recorded at different epochs using statistical testing strategies. The TLS point clouds can be approximated with parametric surfaces, such as planes, using the Gauss–Helmert model, or the newly introduced T-splines surfaces. In both cases, the goal is to minimize the squared distance between the observations and the approximated surfaces in order to estimate parameters, such as normal vector or control points. In this contribution, we will show how the residuals of the surface approximation can be used to derive the correlation structure of the noise of the observations. We will estimate the correlation parameters using the Whittle maximum likelihood and use comparable simulations and real data to validate our methodology. Using the least-squares adjustment as a “filter of the geometry” paves the way for the determination of a correlation model for many sensors recording 3D point clouds.


2021 ◽  
Vol 10 (8) ◽  
pp. 525
Author(s):  
Wenmin Yao ◽  
Tong Chu ◽  
Wenlong Tang ◽  
Jingyu Wang ◽  
Xin Cao ◽  
...  

As one of China′s most precious cultural relics, the excavation and protection of the Terracotta Warriors pose significant challenges to archaeologists. A fairly common situation in the excavation is that the Terracotta Warriors are mostly found in the form of fragments, and manual reassembly among numerous fragments is laborious and time-consuming. This work presents a fracture-surface-based reassembling method, which is composed of SiamesePointNet, principal component analysis (PCA), and deep closest point (DCP), and is named SPPD. Firstly, SiamesePointNet is proposed to determine whether a pair of point clouds of 3D Terracotta Warrior fragments can be reassembled. Then, a coarse-to-fine registration method based on PCA and DCP is proposed to register the two fragments into a reassembled one. The above two steps iterate until the termination condition is met. A series of experiments on real-world examples are conducted, and the results demonstrate that the proposed method performs better than the conventional reassembling methods. We hope this work can provide a valuable tool for the virtual restoration of three-dimension cultural heritage artifacts.


Sign in / Sign up

Export Citation Format

Share Document