scholarly journals An Application of Natural Language Processing to Classify What Terrorists Say They Want

2022 ◽  
Vol 11 (1) ◽  
pp. 23
Author(s):  
Raj Bridgelall

Knowing what perpetrators want can inform strategies to achieve safe, secure, and sustainable societies. To help advance the body of knowledge in counterterrorism, this research applied natural language processing and machine learning techniques to a comprehensive database of terrorism events. A specially designed empirical topic modeling technique provided a machine-aided human decision process to glean six categories of perpetrator aims from the motive text narrative. Subsequently, six different machine learning models validated the aim categories based on the accuracy of their association with a different narrative field, the event summary. The ROC-AUC scores of the classification ranged from 86% to 93%. The Extreme Gradient Boosting model provided the best predictive performance. The intelligence community can use the identified aim categories to help understand the incentive structure of terrorist groups and customize strategies for dealing with them.

Author(s):  
Rashida Ali ◽  
Ibrahim Rampurawala ◽  
Mayuri Wandhe ◽  
Ruchika Shrikhande ◽  
Arpita Bhatkar

Internet provides a medium to connect with individuals of similar or different interests creating a hub. Since a huge hub participates on these platforms, the user can receive a high volume of messages from different individuals creating a chaos and unwanted messages. These messages sometimes contain a true information and sometimes false, which leads to a state of confusion in the minds of the users and leads to first step towards spam messaging. Spam messages means an irrelevant and unsolicited message sent by a known/unknown user which may lead to a sense of insecurity among users. In this paper, the different machine learning algorithms were trained and tested with natural language processing (NLP) to classify whether the messages are spam or ham.


Author(s):  
Marina Sokolova ◽  
Stan Szpakowicz

This chapter presents applications of machine learning techniques to traditional problems in natural language processing, including part-of-speech tagging, entity recognition and word-sense disambiguation. People usually solve such problems without difficulty or at least do a very good job. Linguistics may suggest labour-intensive ways of manually constructing rule-based systems. It is, however, the easy availability of large collections of texts that has made machine learning a method of choice for processing volumes of data well above the human capacity. One of the main purposes of text processing is all manner of information extraction and knowledge extraction from such large text. Machine learning methods discussed in this chapter have stimulated wide-ranging research in natural language processing and helped build applications with serious deployment potential.


Author(s):  
Tamanna Sharma ◽  
Anu Bajaj ◽  
Om Prakash Sangwan

Sentiment analysis is computational measurement of attitude, opinions, and emotions (like positive/negative) with the help of text mining and natural language processing of words and phrases. Incorporation of machine learning techniques with natural language processing helps in analysing and predicting the sentiments in more precise manner. But sometimes, machine learning techniques are incapable in predicting sentiments due to unavailability of labelled data. To overcome this problem, an advanced computational technique called deep learning comes into play. This chapter highlights latest studies regarding use of deep learning techniques like convolutional neural network, recurrent neural network, etc. in sentiment analysis.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ivano Lauriola ◽  
Fabio Aiolli ◽  
Alberto Lavelli ◽  
Fabio Rinaldi

Abstract Background Named Entity Recognition is a common task in Natural Language Processing applications, whose purpose is to recognize named entities in textual documents. Several systems exist to solve this task in the biomedical domain, based on Natural Language Processing techniques and Machine Learning algorithms. A crucial step of these applications is the choice of the representation which describes data. Several representations have been proposed in the literature, some of which are based on a strong knowledge of the domain, and they consist of features manually defined by domain experts. Usually, these representations describe the problem well, but they require a lot of human effort and annotated data. On the other hand, general-purpose representations like word-embeddings do not require human domain knowledge, but they could be too general for a specific task. Results This paper investigates methods to learn the best representation from data directly, by combining several knowledge-based representations and word embeddings. Two mechanisms have been considered to perform the combination, which are neural networks and Multiple Kernel Learning. To this end, we use a hybrid architecture for biomedical entity recognition which integrates dictionary look-up (also known as gazetteers) with machine learning techniques. Results on the CRAFT corpus clearly show the benefits of the proposed algorithm in terms of F1 score. Conclusions Our experiments show that the principled combination of general, domain specific, word-, and character-level representations improves the performance of entity recognition. We also discussed the contribution of each representation in the final solution.


2020 ◽  
Vol 30 (2) ◽  
pp. 155-174
Author(s):  
Tim Hutchinson

Purpose This study aims to provide an overview of recent efforts relating to natural language processing (NLP) and machine learning applied to archival processing, particularly appraisal and sensitivity reviews, and propose functional requirements and workflow considerations for transitioning from experimental to operational use of these tools. Design/methodology/approach The paper has four main sections. 1) A short overview of the NLP and machine learning concepts referenced in the paper. 2) A review of the literature reporting on NLP and machine learning applied to archival processes. 3) An overview and commentary on key existing and developing tools that use NLP or machine learning techniques for archives. 4) This review and analysis will inform a discussion of functional requirements and workflow considerations for NLP and machine learning tools for archival processing. Findings Applications for processing e-mail have received the most attention so far, although most initiatives have been experimental or project based. It now seems feasible to branch out to develop more generalized tools for born-digital, unstructured records. Effective NLP and machine learning tools for archival processing should be usable, interoperable, flexible, iterative and configurable. Originality/value Most implementations of NLP for archives have been experimental or project based. The main exception that has moved into production is ePADD, which includes robust NLP features through its named entity recognition module. This paper takes a broader view, assessing the prospects and possible directions for integrating NLP tools and techniques into archival workflows.


Sign in / Sign up

Export Citation Format

Share Document