scholarly journals Deviation of Peak Hours for Urban Rail Transit Stations: A Case Study in Xi’an, China

2019 ◽  
Vol 11 (10) ◽  
pp. 2733 ◽  
Author(s):  
Lijie Yu ◽  
Quan Chen ◽  
Kuanmin Chen

The inconsistencies of passenger flow volume between stations’ peak hours and cities’ peak hours have emerged as a phenomenon in various cities worldwide. Passenger flow forecasting at planning stages can only predict passenger flow volume in city peak hours and for the whole day. For some stations, the highest flow does not occur in the city peak hours, and station scale design is often too small. This study locates the formation mechanism of station peak in which the temporal distribution of the station is the superposition of different temporal distributions of the purpose determined by land-use attributes. Data from 63 stations in Xi’an, China, were then used to present an enlargement coefficient which can change the boarding and alighting volume in city peak hours to a station’s own peak hours. This was done by analyzing the inconsistencies of passenger flow volume between the station’s peak hours and the city’s peak hours. Morning peak deviation coefficient (PDC) and evening PDC were selected as datasets, and stations were classified accordingly. Statistics of land usage for every type of station showed that when the stations were surrounded by developed land, the relationship between the PDC and the commuter travel land proportion was to some extent orderly. More than 90.00% of stations with a proportion of commuter travel land that was more than 0.50 had PDCs under 1.10. All stations with a proportion of commuter travel land that was less than 0.50 had morning PDCs over 1.10. Finally, data from 52 stations in Chongqing, China were used to verify the findings, with the results in Chongqing predominantly corresponding to those in Xi’an.

2012 ◽  
Vol 450-451 ◽  
pp. 295-301 ◽  
Author(s):  
Ling Hong ◽  
Jia Gao ◽  
Rui Hua Xu

The emergency disposal of urban rail transit needs to accurately estimate the emergency range and total affected passenger flow volume. The urban rail transit network could be simplified to an abstract model which is easy to be analyst based on the graph theory method. Considering the actual network back-turning lines and vehicle storage tracks of urban rail network, the emergency range could be estimated effectively. The affected passenger flow could be classified as different kinds based on the different paths of passenger flow. The classification of passenger flow mainly includes “delay passenger flow”, “detour passenger flow” and “loss passenger flow”. Considering the emergency range, the different affected passenger flows could be superposed over time based on the abstract model, then the affected passenger flow volume and virtual loss time could be calculated out. The results could provide basis for the emergency disposal in urban rail transit. The example analysis is verified the feasibility of this method.


Author(s):  
Zhenjun Zhu ◽  
Jun Zeng ◽  
Xiaolin Gong ◽  
Yudong He ◽  
Shucheng Qiu

With the continuous improvement of the operation line network of urban rail transit, analyzing influencing factors of transfer passenger flow of urban rail transit is critical to improve the transfer demand analysis of urban rail transit. Using data collected from questionnaires, transfer passenger flow surveys and smart cards, this study proposes an approach base on nested logit passenger flow assignment model considering transfer choice behaviours of passengers. The transfer passenger flow at seven transfer stations in Nanjing is obtained. Subsequently, this study investigates the potential influencing factors of transfer passenger flow, including the node degree, geographic location (located in the city center, urban fringe, suburbs or suburban fringe), economic location (distance from the city center) and transportation locations (if it is close to a transportation hub or in combination with the hub) of rail transit transfer stations. The results indicate that a positive correlation between the transfer passenger flow and the node degrees of transfer stations. However, the relationship between transfer passenger flow and the economic, geographic, and transportation locations of transfer stations is not clear. The finding have reference value for the network design of rail transit transfer stations and transfer facilities, and provide reference for the analysis of passenger flow under network operation.


2019 ◽  
Vol 11 (22) ◽  
pp. 6441
Author(s):  
Deng ◽  
Zeng ◽  
Mei

: For urban rail transit, an environmentally-friendly transportation mode, reasonable passenger flow assignment is the basis of train planning and passenger control, which is conducive to the sustainability of finance, operation and production. With the continuous expansion of the scale of urban rail networks, passenger travel path decision-making tends to be complex, which puts forward higher requirements of networked transportation organization. Based on undirected graphs and the idea of the recursive divide-and-conquer algorithm, this paper proposes a hierarchical effective path search method made up of a three-layer path generation strategy, which consists of deep search line paths, key station paths composed of origin–destination (O-D) nodes and transfer stations, and the station sequence path between the key stations. It can effectively simplify the path search and eliminate obvious unreasonable paths. Comparing the existing research results based on the classical polynomial Logit model, a practical Improved C-Logit multi-path passenger flow assignment model is proposed to calculate the selection ratio of each path in the set of effective paths. Combining the hierarchical path search strategy, the O-D pairs of passenger flow are divided into local-line and cross-line situations. The time-varying cross-line passenger flow is decomposed into a series of passenger sections along the key station paths. A passenger flow pushing assignment algorithm based on line decomposition is designed, which satisfies the dynamic, time-varying and continuous characteristics. The validation of Guangzhou Metro’s actual line network and time-varying O-D passenger demand in 2019 shows that the spatio-temporal distribution results of the passenger pushing assignment have a high degree of coincidence with the actual statistical data.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Taoyuan Yang ◽  
Peng Zhao ◽  
Ke Qiao ◽  
Xiangming Yao ◽  
Tao Wang

The vulnerability of an urban rail transit (URT) network is an index that reflects its ability to cope with risks. However, existing URT network vulnerability studies have paid less attention to station track layout and passenger choice behavior, both of which significantly affect the consequences of a disruption incident. In the present study, we first analyze an actual scenario of URT section disruption and passenger behavior during an incident. Then, we propose two section vulnerability indexes that quantitatively evaluate the effect of a URT section disruption from two aspects: detour delay and loss in passenger flow. To make the application scenario of this method more realistic, the track layout and depot location are taken into account. By considering the relationship between train routing and the sections, a concept of “dominant section” is put forward to make the calculation of the vulnerability indexes more efficient and can be used for a simultaneous multi-section-disruption scenario. Finally, a case study of the Beijing Subway network is provided. The results show that disruptions in only a few critical sections can significantly affect the URT network passenger flow. Disruption of only 3% of the sections can lead to 80% passenger-flow loss, which reflects the high vulnerability of URT networks. The method proposed in this paper can provide support for the evaluation of URT network performance.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 703
Author(s):  
Jun Zhang ◽  
Jiaze Liu ◽  
Zhizhong Wang

Owing to the increased use of urban rail transit, the flow of passengers on metro platforms tends to increase sharply during peak periods. Monitoring passenger flow in such areas is important for security-related reasons. In this paper, in order to solve the problem of metro platform passenger flow detection, we propose a CNN (convolutional neural network)-based network called the MP (metro platform)-CNN to accurately count people on metro platforms. The proposed method is composed of three major components: a group of convolutional neural networks is used on the front end to extract image features, a multiscale feature extraction module is used to enhance multiscale features, and transposed convolution is used for upsampling to generate a high-quality density map. Currently, existing crowd-counting datasets do not adequately cover all of the challenging situations considered in this study. Therefore, we collected images from surveillance videos of a metro platform to form a dataset containing 627 images, with 9243 annotated heads. The results of the extensive experiments showed that our method performed well on the self-built dataset and the estimation error was minimum. Moreover, the proposed method could compete with other methods on four standard crowd-counting datasets.


2013 ◽  
Vol 433-435 ◽  
pp. 612-616 ◽  
Author(s):  
Bin Xia ◽  
Fan Yu Kong ◽  
Song Yuan Xie

This study analyses and compares several forecast methods of urban rail transit passenger flow, and indicates the necessity of forecasting short-term passenger flow. Support vector regression is a promising method for the forecast of passenger flow because it uses a risk function consisting of the empirical error and a regularized term which is based on the structural risk minimization principle. In this paper, the prediction model of urban rail transit passenger flow is constructed. Through the comparison with BP neural networks forecast methods, the experimental results show that applying this method in URT passenger flow forecasting is feasible and it provides a promising alternative to passenger flow prediction.


2012 ◽  
Vol 253-255 ◽  
pp. 1995-2000
Author(s):  
Qiao Mei Tang ◽  
Li Ping Shen ◽  
Xian Yong Tang

large passenger flow is a common condition of urban transit operation, and the station bears the pressure of large passenger flow directly. This paper analyzes the reason for the appearance of large passenger flow and the characteristics of it, discusses the principles and methods that the station can apply under large passenger flow combined with the passenger’s transport process and the operation process.


Sign in / Sign up

Export Citation Format

Share Document