scholarly journals Rural–Urban Gradients and Human Population Dynamics

2019 ◽  
Vol 11 (11) ◽  
pp. 3107 ◽  
Author(s):  
Javier Montalvo ◽  
Enrique Ruiz-Labrador ◽  
Pablo Montoya-Bernabéu ◽  
Belén Acosta-Gallo

Rural–urban gradients offer an appropriate ecological framework for understanding relevant social issues to sustainability and policy planning. We tested the hypothesis that human population growth rate at a local scale is indirectly driven by spatial and rurality gradients, which can be applied to cultural landscapes in Mediterranean Europe. The whole of local administrative/spatial units of Spain—8125 municipalities—, previously classified into five categories along a rural–urban gradient, was used as a case study. Several geospatial patterns and associations among local average per capita population growth rate, population mean age, road accessibility, and other environmental and landscape variables linked to rurality gradients were identified by means of geographic information system (GIS) and multivariate statistics. Regression analysis was used to assess the relationship between population size changes through time and other demographic and territorial variables. Population growth rate was associated with road accessibility and rurality gradient, supporting the established hypothesis. Short-term population growth or decline was directly driven by population mean age. A visual hypothesized model of local population growth rate based on empirical evidence is presented. The results are useful for decision-makers, from local land management interventions to developing strategies and policies to address the demographic challenge.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Daniel Oro ◽  
Daniel F. Doak

Abstract Standard procedures for capture–mark–recapture modelling (CMR) for the study of animal demography include running goodness-of-fit tests on a general starting model. A frequent reason for poor model fit is heterogeneity in local survival among individuals captured for the first time and those already captured or seen on previous occasions. This deviation is technically termed a transience effect. In specific cases, simple, uni-state CMR modeling showing transients may allow researchers to assess the role of these transients on population dynamics. Transient individuals nearly always have a lower local survival probability, which may appear for a number of reasons. In most cases, transients arise due to permanent dispersal, higher mortality, or a combination of both. In the case of higher mortality, transients may be symptomatic of a cost of first reproduction. A few studies working at large spatial scales actually show that transients more often correspond to survival costs of first reproduction rather than to permanent dispersal, bolstering the interpretation of transience as a measure of costs of reproduction, since initial detections are often associated with first breeding attempts. Regardless of their cause, the loss of transients from a local population should lower population growth rate. We review almost 1000 papers using CMR modeling and find that almost 40% of studies fitting the searching criteria (N = 115) detected transients. Nevertheless, few researchers have considered the ecological or evolutionary meaning of the transient phenomenon. Only three studies from the reviewed papers considered transients to be a cost of first reproduction. We also analyze a long-term individual monitoring dataset (1988–2012) on a long-lived bird to quantify transients, and we use a life table response experiment (LTRE) to measure the consequences of transients at a population level. As expected, population growth rate decreased when the environment became harsher while the proportion of transients increased. LTRE analysis showed that population growth can be substantially affected by changes in traits that are variable under environmental stochasticity and deterministic perturbations, such as recruitment, fecundity of experienced individuals, and transient probabilities. This occurred even though sensitivities and elasticities of these parameters were much lower than those for adult survival. The proportion of transients also increased with the strength of density-dependence. These results have implications for ecological and evolutionary studies and may stimulate other researchers to explore the ecological processes behind the occurrence of transients in capture–recapture studies. In population models, the inclusion of a specific state for transients may help to make more reliable predictions for endangered and harvested species.


2020 ◽  
Vol 376 (1816) ◽  
pp. 20190708 ◽  
Author(s):  
Miikka Tallavaara ◽  
Erlend Kirkeng Jørgensen

Hunter–gatherer population growth rate estimates extracted from archaeological proxies and ethnographic data show remarkable differences, as archaeological estimates are orders of magnitude smaller than ethnographic and historical estimates. This could imply that prehistoric hunter–gatherers were demographically different from recent hunter–gatherers. However, we show that the resolution of archaeological human population proxies is not sufficiently high to detect actual population dynamics and growth rates that can be observed in the historical and ethnographic data. We argue that archaeological and ethnographic population growth rates measure different things; therefore, they are not directly comparable. While ethnographic growth rate estimates of hunter–gatherer populations are directly linked to underlying demographic parameters, archaeological estimates track changes in the long-term mean population size, which reflects changes in the environmental productivity that provide the ultimate constraint for forager population growth. We further argue that because of this constraining effect, hunter–gatherer populations cannot exhibit long-term growth independently of increasing environmental productivity. This article is part of the theme issue ‘Cross-disciplinary approaches to prehistoric demography’.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Helena Bestová ◽  
Jules Segrestin ◽  
Klaus von Schwartzenberg ◽  
Pavel Škaloud ◽  
Thomas Lenormand ◽  
...  

AbstractThe Metabolic Scaling Theory (MST), hypothesizes limitations of resource-transport networks in organisms and predicts their optimization into fractal-like structures. As a result, the relationship between population growth rate and body size should follow a cross-species universal quarter-power scaling. However, the universality of metabolic scaling has been challenged, particularly across transitions from bacteria to protists to multicellulars. The population growth rate of unicellulars should be constrained by external diffusion, ruling nutrient uptake, and internal diffusion, operating nutrient distribution. Both constraints intensify with increasing size possibly leading to shifting in the scaling exponent. We focused on unicellular algae Micrasterias. Large size and fractal-like morphology make this species a transitional group between unicellular and multicellular organisms in the evolution of allometry. We tested MST predictions using measurements of growth rate, size, and morphology-related traits. We showed that growth scaling of Micrasterias follows MST predictions, reflecting constraints by internal diffusion transport. Cell fractality and density decrease led to a proportional increase in surface area with body mass relaxing external constraints. Complex allometric optimization enables to maintain quarter-power scaling of population growth rate even with a large unicellular plan. Overall, our findings support fractality as a key factor in the evolution of biological scaling.


Sign in / Sign up

Export Citation Format

Share Document