scholarly journals Evolution and Determinants of an Air Transport Network: A Case Study of the Chinese Main Air Transport Network

2019 ◽  
Vol 11 (14) ◽  
pp. 3933 ◽  
Author(s):  
Min Su ◽  
Weixin Luan ◽  
Zeyang Li ◽  
Shulin Wan ◽  
Zhenchao Zhang

The Chinese main air transport network (CMATN) is the framework for air passenger transport in the country. This study uses complex networks and an econometric model to analyze CMATN’s evolution and determinants. In terms of overall network structure, the network has always shown small-world properties, with smaller average path lengths (2.06–2.15) and larger clustering coefficients (0.68–0.77), while its cumulative degree distribution follows an exponential function. City passenger volumes conform to the degree power law function, which means that the more destinations a city connects to, the higher its passenger traffic will be. In major hub cities, such as Beijing, Shanghai, and Guangzhou, control power decreases, while Chengdu, Kunming, Chongqing, Xi’an, Urumqi, and other cities play an increasingly important role in CMATN. In terms of main route passenger volumes and formation, increases in GDP and tourism have had a promoting effect, while high-speed rail (HSR) poses a threat to overlapping routes. CMATN is primarily located in the central and eastern regions, focusing on China’s economy, tourism, and efficient HSR development. Although the competition from HSR affects the overall network structure of CMATN based on its influence on specific routes, we believe that the impact is limited due to the different transport attributes of the two networks. The research results of this study can become an information source for decision makers and provide a reference for air transport to seek sustainable development.

2020 ◽  
Vol 12 (16) ◽  
pp. 6295
Author(s):  
Shengrun Zhang ◽  
Yue Hu ◽  
Xiaowei Tang ◽  
Kurt Fuellhart ◽  
Liang Dai ◽  
...  

With the rapid expansion of China’s domestic air transport network (CATN), it is fundamental to model which factors and mechanisms impact this development. This paper investigates how the combined endogenous and exogenous factors influencing the evolution of CATN based on longitudinal data by utilizing a more all-encompassing methodology of stochastic actor based-modeling (SABM). Endogenous variables include a density effect, a betweenness effect, a transitivity closure effect, and a ‘number of distances-two’ effect. Exogenous variables incorporate airport hierarchy, a distance effect, presence or absence of low-cost carriers (LCCs) and high-speed rail (HSR). The systematic classification of Chinese airports into more than the typical two or three tiers allows the impacts of the four endogenous covariates to be revealed. Overall, the CATN has tended to evolve into a more compacted and non-concentrated network structure through the creation of non-stop routes and closed triads. The integrated inclusion of low-cost carrier and high-speed rail effects highlights the importance of market presence to the initiation of new routes at initial stages, cultivating potential demand and increasing accessibility. In addition, the construction of HSR to one primary airport within a multi-airport system can raise “shadow effects” for other airports. Our findings provide policy suggestions for airport operators in terms of developing accurate positions in the hierarchy and strengthening transfer ability.


Author(s):  
Bojun Wang ◽  
Aidan O’Sullivan ◽  
Andreas W. Schäfer

This paper examines the beneficial impact of high-speed rail (HSR) on reducing aviation CO2 emissions in China. As a fast-growing economy and the world’s largest CO2 emitter, China has made massive infrastructure investments but has also committed to reducing emissions across all sectors. This study demonstrates that investments in China’s HSR can effectively contribute to reduction of emissions from domestic aviation, a sector that is particularly challenging to decarbonize. Although a wide body of literature has assessed the competition between HSR and air transport, little attention has been paid to the climate implications of this phenomenon. It is estimated that, through mode substitution for air transport, HSR generated a cumulative net saving of between 1.76 and 2.76 million tons of CO2 from 2012 to 2015. This was equivalent to 3.2%–5.1% of 2015 domestic aviation emissions. Importantly, it is also demonstrated that by not taking into account the electricity consumption of HSR, its environmental benefits could be overestimated. Lastly, through analysis of future energy mix scenarios this study highlights that HSR has a great potential to reduce CO2 emissions even further if China achieved its climate pledge in the Paris Agreement in terms of decarbonizing its electricity generation sector by 2030.


2020 ◽  
Vol 46 (3) ◽  
pp. 379-397
Author(s):  
Chunyang Wang

This paper measures the spatial evolution of urban agglomerations to understand be er the impact of high-speed rail (HSR) construction, based on panel data from fi ve major urban agglomerations in China for the period 2004–2015. It is found that there are signi ficant regional diff erences of HSR impacts. The construction of HSR has promoted population and economic diff usion in two advanced urban agglomerations, namely the Yang e River Delta and Pearl River Delta, while promoting population and economic concentration in two relatively less advanced urban agglomerations, e.g. the middle reaches of the Yang e River and Chengdu–Chongqing. In terms of city size, HSR promotes the economic proliferation of large cities and the economic concentration of small and medium-sized cities along its routes. HSR networking has provided a new impetus for restructuring urban spatial systems. Every region should optimize the industrial division with strategic functions of urban agglomeration according to local conditions and accelerate the construction of inter-city intra-regional transport network to maximize the eff ects of high-speed rail across a large regional territory.


Land ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 303
Author(s):  
Xinhai Lu ◽  
Yifeng Tang ◽  
Shangan Ke

The construction and operation of high-speed rail (HSR) has become an important policy for China to achieve efficiency and fairness and promote high-quality economic growth. HSR promotes the flow of production factors such as labor and capital and affects economic growth, and may further affect urban land use efficiency (ULUE). To explore the impact of HSR on ULUE, this paper uses panel data of 284 cities in China from 2005 to 2018, and constructs Propensity Score Matching-Differences in Differences model to evaluate the effect of HSR on ULUE. The result of entire China demonstrates that the HSR could significantly improves the ULUE. Meanwhile, this paper also considers the heterogeneity of results caused by geographic location, urban levels and scales. It demonstrates that the HSR has a significantly positive effect on ULUE of Eastern, Central China, and large-sized cities. However, in Western China, in medium-sized, and small-sized cities, the impact of HSR on ULUE is not significant. This paper concludes that construction and operation of HSR should be linked to urban development planning and land use planning. Meanwhile, the cities with different geographical locations and scales should take advantage of HSR to improve ULUE and promote urban coordinated development.


2020 ◽  
Vol 12 (3) ◽  
pp. 1131
Author(s):  
Wenliang Zhou ◽  
Xiaorong You ◽  
Wenzhuang Fan

To avoid conflicts among trains at stations and provide passengers with a periodic train timetable to improve service level, this paper mainly focuses on the problem of multi-periodic train timetabling and routing by optimizing the routes of trains at stations and their entering time and leaving time on each chosen arrival–departure track at each visited station. Based on the constructed directed graph, including unidirectional and bidirectional tracks at stations and in sections, a mixed integer linear programming model with the goal of minimizing the total travel time of trains is formulated. Then, a strategy is introduced to reduce the number of constraints for improving the solved efficiency of the model. Finally, the performance, stability and practicability of the proposed method, as well as the impact of some main factors on the model are analyzed by numerous instances on both a constructed railway network and Guang-Zhu inter-city railway; they are solved using the commercial solver WebSphere ILOG CPLEX (International Business Machines Corporation, New York, NY, USA). Experimental results show that integrating multi-periodic train timetabling and routing can be conducive to improving the quality of a train timetable. Hence, good economic and social benefits for high-speed rail can be achieved, thus, further contributing to the sustained development of both high-speed railway systems and society.


Sign in / Sign up

Export Citation Format

Share Document