scholarly journals A Sustainable Multimodal Transport System: The Two-Echelon Location-Routing Problem with Consolidation in the Euro–China Expressway

2019 ◽  
Vol 11 (19) ◽  
pp. 5486 ◽  
Author(s):  
Lu ◽  
Lang ◽  
Yu ◽  
Li

Sustainable development of transport systems is a common topic of concern and effort in multiple countries, in which reducing carbon emissions is one of the core goals. Multimodal transport is an effective way to achieve carbon emission reduction and to efficiently utilize transport resources. The intercontinental transport system, represented by the Euro–China Expressway, is a prominent exploration that has recently received attention, which promotes the sustainable development of transport between countries and carbon emission reduction. In the intercontinental multimodal transport system, the reasonable connection of roads and railways, especially the optimization of consolidation, is an important link which affects the system's carbon emissions. This paper focuses on the consolidation of sustainable multimodal transport and summarizes the multimodal transport two-echelon location-routing problem with consolidation (MT-2E-LRP-C). We aim to solve multimodal consolidation optimization problem, especially locations of multimodal station, by routing of highway and railway. We propose a two-layer mixed integer linear problem (MILP) model, which highlights the consolidation of roads and railways, focuses on road and rail transport connections, and optimizes road routes and railway schemes. To validate the MT-2E-LRP-C model, we design a series of random instances for different quantities of nodes. In order to solve large-scale instances and realistic transport problems, we propose a hybrid differential evolution algorithm, which decomposes the problem into a railway layer and a highway layer for heuristic algorithm solving. Furthermore, the MILP model and algorithm are tested by small-scale random instances, and the hybrid differential evolution algorithm is solved for the large-scale random instances. Finally, we solve the realist instance from the Euro–China Expressway to develop instructive conclusions.

Algorithms ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 45
Author(s):  
Rafael D. Tordecilla ◽  
Pedro J. Copado-Méndez ◽  
Javier Panadero ◽  
Carlos L. Quintero-Araujo ◽  
Jairo R. Montoya-Torres ◽  
...  

The location routing problem integrates both a facility location and a vehicle routing problem. Each of these problems are NP-hard in nature, which justifies the use of heuristic-based algorithms when dealing with large-scale instances that need to be solved in reasonable computing times. This paper discusses a realistic variant of the problem that considers facilities of different sizes and two types of uncertainty conditions. In particular, we assume that some customers’ demands are stochastic, while others follow a fuzzy pattern. An iterated local search metaheuristic is integrated with simulation and fuzzy logic to solve the aforementioned problem, and a series of computational experiments are run to illustrate the potential of the proposed algorithm.


Author(s):  
H A Hassan-Pour ◽  
M Mosadegh-Khah ◽  
R Tavakkoli-Moghaddam

This paper presents a novel mathematical model for a stochastic location-routing problem (SLRP) that minimizes the facilities establishing cost and transportation cost, and maximizes the probability of delivery to customers. In this proposed model, new aspects of a location-routing problem (LRP), such as stochastic availability of facilities and routes, are developed that are similar to real-word problems. The proposed model is solved in two stages: (i) solving the facility location problem (FLP) by a mathematical algorithm and (ii) solving the multi-objective multi-depot vehicle routing problem (MO-MDVRP) by a simulated annealing (SA) algorithm hybridized by genetic operators, namely mutation and crossover. The proposed SA can find good solutions in a reasonable time. It solves the proposed model in large-scale problems with acceptable results. Finally, a trade-off curve is used to depict and discuss a large-sized problem. The associated results are compared with the results obtained by the lower bound and Lingo 8.0 software.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Peng Yang ◽  
Lining Zeng

This paper focuses on the two-echelon location routing problem with time constraints in city logistics system. The aim is to define the structure of a system which can optimize the location and the number of two different kinds of logistics facilities as well as the related routes on each echelon. A mathematic model considering the problem characteristics has been set up. Based on probability selection principle, this paper first puts forward a metaheuristic algorithm with comprehensive consideration of time and space accessibility to solve it. Then, random instances of different sizes are generated to verify the effectiveness of our method.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Jiali Li ◽  
Zhijie Zhao ◽  
Tao Cheng

The distribution network composed of location and route is an important part of e-commerce logistics. With the continuous improvement of e-commerce requirements for logistics level, the practice of planning logistics network only from the perspective of the network location or the vehicle route can no longer meet the actual demand. In addition to the comprehensive consideration of the location-routing problem, the reverse logistics caused by customers’ returning goods should be taken into account. In this paper, the destruction and reorganization strategy of adaptive large-scale neighborhood search algorithm was introduced into the traditional genetic algorithm, so as to conduct research on the logistics location-routing problem under the background of integration of collection and distribution. Finally, the effectiveness of the optimized genetic algorithm was verified by Matlab tools and the existing bench-marking data set of the location-routing problem, which provided reference for the planning and decision-making of logistics enterprises.


2020 ◽  
Vol 39 (3) ◽  
pp. 3259-3273
Author(s):  
Nasser Shahsavari-Pour ◽  
Najmeh Bahram-Pour ◽  
Mojde Kazemi

The location-routing problem is a research area that simultaneously solves location-allocation and vehicle routing issues. It is critical to delivering emergency goods to customers with high reliability. In this paper, reliability in location and routing problems was considered as the probability of failure in depots, vehicles, and routs. The problem has two objectives, minimizing the cost and maximizing the reliability, the latter expressed by minimizing the expected cost of failure. First, a mathematical model of the problem was presented and due to its NP-hard nature, it was solved by a meta-heuristic approach using a NSGA-II algorithm and a discrete multi-objective firefly algorithm. The efficiency of these algorithms was studied through a complete set of examples and it was found that the multi-objective discrete firefly algorithm has a better Diversification Metric (DM) index; the Mean Ideal Distance (MID) and Spacing Metric (SM) indexes are only suitable for small to medium problems, losing their effectiveness for big problems.


Sign in / Sign up

Export Citation Format

Share Document