scholarly journals Study on Runoff Simulation of the Source Region of the Yellow River and the Inland Arid Source Region Based on the Variable Infiltration Capacity Model

2020 ◽  
Vol 12 (17) ◽  
pp. 7041
Author(s):  
Yuan Wang ◽  
Wengang Zheng ◽  
Hongwei Xie ◽  
Qi Liu ◽  
Jiahua Wei

Hydrological process simulation and rainfall–runoff analysis are important foundations for reasonably evaluating changes in water resources. In this paper, the VIC (Variable Infiltration Capacity) hydrological model was used to simulate runoff without observed data for exploring the applicability of the model in the Kequ, Dari, and Jimai river basins in the source region of the Yellow River, and the Balegen River basin in the inland arid source region. The results show that, from 2015 to 2018, the VIC model had a good simulation effect. The Nash efficiency coefficients (NSE) of the four basins were all above 0.7, and the NSE of the Dari River basin reached 0.93. The relative error (RE) of the three river basins was about 5%, on average, and the RE of the Balegen basin was 6.50%, indicating that the model has good applicability in the study area. Climate perturbation experiments were performed to quantitatively analyze the relationship between rainfall and runoff. The results show that, in the source area of the Yellow River, rainfall and runoff are roughly linearly related. However, in the inland arid source area, temperature has a slightly greater impact on runoff than rainfall.

Author(s):  
Dongying Yi ◽  
Yue Xu ◽  
Nan Wang ◽  
Xiaoyi Ma

The primary approach to realizing long-term runoff prediction involves combining a hydrological model with general circulation model. Previous studies on the Source area of the Yellow River were all based on the Coupled Model Intercomparison Project Phase 5 (CMIP5) data sets with defects in physical mechanisms. In this paper, the Beijing Climate Center Climate System Model (BCC-CSM2-MR) of CMIP6, which proved to perform well in arid and semi-arid regions, will be used to drive the Soil & Water Assessment Tool (SWAT) model and evaluate its applicability in runoff simulation at Tang Nahai Hydrological Station from 2011 to 2019. The occurrence of the extreme value of runoff, its change trend, and the year of abrupt change of runoff in the four Shared Socio-economic Pathway (SSP) scenarios (SSP1-2.6, 2-4.5, 3-7.0, and 5-8.5) during 2021-2100 were analyzed. The results show that: (1) the runoff simulation evaluation index of SWAT driven by BCC-CSM2-MR in the research area from 2011 to 2019 is excellent, and the runoff simulation in the future is reliable and effective. (2) only the average annual runoff in scenario 5-8.5 (708.5m /s) from 2021 to 2100 was significantly higher than that in 2011-2019. Other scenarios are close to or less than the annual runoff observed. Most importantly, the maximum and minimum annual runoff values under the four scenarios all occurred during 2060-2080, so the attribution analysis of runoff extremum during 2060-2080 is worth further study. (3) it is necessary to evaluate whether the existing reservoirs and hydropower stations in the Yellow River basin can reasonably regulate and utilize the annual runoff under scenario 5-8.5.


2018 ◽  
Vol 246 ◽  
pp. 01089
Author(s):  
Yongqiang Wang ◽  
Zhiming Liu ◽  
Zhe Yuan ◽  
Jijun Xu ◽  
Jin Chen

Taking the source region of the Yellow River as an example, this paper first introduces the theory of energy value and its basic steps. Then combined with the Yellow River source area, the variation characteristics of precipitation and surface water resources from 1961 to 2011 in the Yellow River source area were analyzed, and both of them showed a trend of decreasing year by year. On this basis, using the theory of energy value, combined with relevant parameters, taking 2011 year as an example, further analyses the chemical energy and solar energy of water resources in the Yellow River source area, and gives the value of surface water resources. The value of water resources per unit is 1.59 yuan/m3. For the Yellow River source area, the overall value of water resources for the whole basin in 2011 is 33.55 billion yuan. It can provide a reference for the analysis of the value of surface water resources in the Yellow River Basin.


2020 ◽  
Author(s):  
Cong Jiang ◽  
Eric J. R. Parteli ◽  
Yaping Shao

<p>The Yellow River Basin (795,000 km<sup>2</sup>) in Northern China has been greatly affected by intensive human activity and climate change over the past decades. In this study, a coupled atmospheric and hydrological modelling system is applied to investigating the long-term hydrological cycle and short-term forecasting of hydrological events in the Yellow River Basin. This modelling system (AHMS) combines a hydrological model (HMS) with the Weather Research and Forecast model (WRF) and the Noah land surface scheme (NoahMP-LSM), which has been recently improved to account for topographic influences in the infiltration scheme and to allow for interactions between the unsaturated and saturated zones by applying the Darcy-flux boundary condition. Here, simulations are performed using the offline AHMS mode over the Yellow River Basin by considering a time span of 25 years (1979-2003) and a spatial resolution of 20 km. The NCEP reanalysis dataset and observed precipitation data for the referred period are used as meteorological forcing data. The most important parameters affecting the hydrological process are identified by means of a parametric sensitivity analysis. Specifically, these main parameters are the Manning's roughness coefficient of channel, the soil infiltration capacity and the hydraulic conductivity of riverbed. To calibrate the values of these parameters for the Yellow River Basin, model predictions for daily streamflow are compared with the corresponding observational data at four hydrological gauging stations including Tangnaihe (TNH), Lanzhou (LZ), Toudaoguai (TDG) and Huanyuankou (HYK) on the mainstream of the Yellow River. Quantitative agreement is found between these observations and the simulation results for all stations. The progress achieved in the present work paves the way for a sediment flux model over the Yellow River Basin and demonstrates the good performance of AHMS for long-term hydrological simulations. </p><p></p>


2008 ◽  
Vol 22 (11) ◽  
pp. 1618-1629 ◽  
Author(s):  
Yoshinobu Sato ◽  
Xieyao Ma ◽  
Jianqing Xu ◽  
Masayuki Matsuoka ◽  
Hongxing Zheng ◽  
...  

Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3082
Author(s):  
Chongxu Zhao ◽  
Liliang Ren ◽  
Fei Yuan ◽  
Limin Zhang ◽  
Shanhu Jiang ◽  
...  

Comprehensively evaluating satellite precipitation products (SPPs) for hydrological simulations on watershed scales is necessary given that the quality of different SPPs varies remarkably in different regions. The Yellow River source region (YRSR) of China was chosen as the study area. Four SPPs were statistically evaluated, namely, the Tropical Rainfall Measurement Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) 3B42V7, Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks Climate Data Record (PERSIANN-CDR), Integrated Multisatellite Retrievals for Global Precipitation Measurement final run (IMERG-F), and gauge-corrected Global Satellite Mapping of Precipitation (GSMaP-Gauge) products. Subsequently, the hydrological utility of these SPPs was assessed via the variable infiltration capacity hydrological model on a daily temporal scale. Results show that the four SPPs generally demonstrate similar spatial distribution pattern of precipitation to that of the ground observations. In the period of January 1998 to December 2016, 3B42V7 outperforms PERSIANN-CDR on basin scale. In the period of April 2014 to December 2016, GSMaP-Gauge demonstrates the highest precipitation monitoring capability and hydrological utility among all SPPs on grid and basin scales. In general, 3B42V7, IMERG-F, and GSMaP-Gauge show a satisfactory hydrological performance in streamflow simulations in YRSR. IMERG-F has an improved hydrological utility than 3B42V7 in YRSR.


Author(s):  
J. Liu ◽  
J. J. Chen ◽  
X. N. Zhao ◽  
H. Z. Zhang

Abstract. The source region of the Yellow River is an important source of water conservation in the Qinghai-Tibet Plateau. It is also an animal husbandry base that has a major impact on China. Its ecological environment changes will have a major impact on the safe and sustainable development of water use in Asia. The alpine grassland is an important part of the ecosystem of the Yellow River source area, and the spatial differentiation characteristics of the plaque have important indication significance for the ecological environment succession. In this paper, the alpine grassland in the source region of the Yellow River is taken as the research object. Based on the aerial image of the unmanned aerial vehicle, the EGI threshold method is used to extract the vegetation patches and the bare plaques to obtain high-precision field monitoring data, and the landscape ecology principle is used to analyze the four types of alpine grassland. The morphological characteristics of plaques in different grassland types are studied, and the spatial indications of spatial sequences are used to study the ecological significance of plaque succession. The results show that the number of plaques in swamp meadows, alpine meadows, degraded meadows and alpine grassland increase significantly, the degree of fragmentation increase, and the area of vegetation patches decrease significantly. The area of bare plaque increase significantly as the main trend; the distribution and dominance of landscape plaques are analyzed; the swamp meadow have the highest spread, the best aggregation, and the largest proportion of vegetation plaque, the highest degree of dominance, alpine grassland Conversely; in terms of the complexity of landscape patch shape; the area-weighted shape index and the area-weighted fractal dimension increase with the order of swamp meadows, alpine meadows, degraded meadows and alpine grasslands, tending to be complex plaque space. The ecological risk intensity index of alpine grassland in the source region of the Yellow River varies greatly, and the ecological risk of alpine grassland is high. The results of this study provide data support for elucidating the mechanism of spatial differentiation of alpine grass plaques, provide scientific assistance for grassland monitoring and management in the source area, and it provides an important basis for further discussion on ecological system protection, animal husbandry economy and sustainable development of alpine grassland in China. At the same time, it provides important theoretical support and ecological indication significance for the understanding of the alpine grassland ecosystem succession in the source area of the Yellow River.


Sign in / Sign up

Export Citation Format

Share Document