scholarly journals The High-Performance Dissipating Frame (HPDF) System for the Seismic Strengthening of RC Existing Buildings

2021 ◽  
Vol 13 (4) ◽  
pp. 1864
Author(s):  
Vincenzo Manfredi ◽  
Giuseppe Santarsiero ◽  
Angelo Masi ◽  
Giuseppe Ventura

In Italy as well as in other earthquake-prone countries, the large number of existing buildings requiring seismic retrofitting calls for sustainable solutions able to reduce both costs and downtime. To this purpose, in this paper, the High-Performance Dissipating Frame system (HPDF), a new strengthening solution for the seismic rehabilitation of existing buildings, is presented. HPDF is based on external precast reinforced concrete (RC) frames rigidly connected to the existing structures and equipped with shear damper devices in order to provide high dissipation capacity. The proposed solution permits: (i) to increase sustainability through works made up from the outside without removing/demolishing infills/other non-structural components, (ii) rapid execution by adopting precast resisting members mutually restrained with steel connections, and (iii) effectiveness due to shear damper devices able to dissipate a large amount of shaking energy. In the paper, a displacement-based design procedure is proposed and applied to a numerical example.

2012 ◽  
Vol 217-219 ◽  
pp. 1114-1118 ◽  
Author(s):  
Marco Valente

This study presents a displacement-based design procedure for seismic retrofitting of steel frames using buckling-restrained braces (BRB) to meet a given target displacement in the framework of the capacity spectrum method. The seismic performance of a six-storey steel frame equipped with BRB is investigated. Different storey-wise BRB distribution methods are proposed and the influence on the results of the design procedure is analyzed. Nonlinear dynamic analyses demonstrate the efficacy of the design procedure showing the improvements achieved by the retrofitting intervention using BRB. The maximum top displacement registered for the retrofitted frame under earthquake excitation coincides with the target displacement obtained in accordance with the design procedure. The introduction of buckling-restrained braces enhances the earthquake resistance of the steel frame, providing significant energy dissipation and the stiffness needed to satisfy structural drift limits.


2014 ◽  
Vol 30 (4) ◽  
pp. 1619-1642 ◽  
Author(s):  
Donatello Cardone ◽  
Giuseppe Gesualdi

The use of seismic isolation for the seismic rehabilitation of existing buildings is very attractive but often very tricky due to several aspects related to its implementation. In this paper, a case study of seismic rehabilitation of a high-rise residential building with seismic isolation is presented. The building under consideration is located in southern Italy and it is placed next to another building from which it is separated by a gap of 400 mm. In the paper, all the steps of the seismic rehabilitation process are described. First, the target objective of the seismic rehabilitation and the choice of isolation system type and location are discussed. The design of the isolation system, carried out following a direct displacement-based approach, is then examined. Finally, the main phases followed in the installation of the isolation system are described. Some comments on costs and time needed to complete the intervention are also reported.


Buildings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 164
Author(s):  
Marco Vailati ◽  
Giorgio Monti ◽  
Vincenzo Bianco

This paper deals with the design of the seismic rehabilitation of a case-study building located in Florence, Italy. The particular reinforced concrete building hosts an important operational center of the main company that manages the Italian highway network. It is composed of the juxtaposition of three reinforced concrete edifices standing out from a common basement. The design of the interventions for the seismic rehabilitation of this case study posed different challenges, some even in contrast with each other. The main design challenge was to reach the seismic retrofitting, due to the strategic role of the activities hosted herein, safeguarding as much as possible the peculiarity of the architectural elements. Moreover, the design was made harder by the presence of existing thermal joints between adjacent edifices which were inadequate to prevent the latter from pounding upon each other during an earthquake. This outcome yielded the need to intervene by enlarging the gap between the adjacent buildings. This latter intervention was in stark contrast with the explicit request of the client to bring the least possible disturbance to the strategic activities carried out within it; in fact, the joints are crossed by optical fibers and other technological systems which can be damaged easily. The need to fulfill all these design constraints brought the development of an original design strategy based on the employment of base-isolation in a rather unusual configuration. The details of the design procedure, along with the innovative aspects and the designed devices, are presented. With the objective to refine the adopted strategy in view of its possible repeatability by colleague engineers, the paper also presents a fair discussion of every aspect with regards to both the design and the realization phases. Possible ideas for new research and developments are also highlighted.


2020 ◽  
Vol 1 (2) ◽  
Author(s):  
Chang Liu

At present, earthquakes are a serious problem for building. Severe damages and collapses of buildings were caused by earthquakes in different degrees.It is reported that there are more than 68,858 deaths and hundreds of billions RMB losses in the May 12, 2008 Great Wenchuan Earthquake(Wang, 2008). So, more attention should be paid to seismic technology. In order to face the challenges of earthquake on building, the seismic retrofitting was put forward, which“is the modification of existing structures to make them more resistant to seismic activity, ground motion, or soil failure due to earthquakes”


Author(s):  
Andrea Belleri ◽  
Simone Labò

AbstractThe seismic performance of precast portal frames typical of the industrial and commercial sector could be generally improved by providing additional mechanical devices at the beam-to-column joint. Such devices could provide an additional degree of fixity and energy dissipation in a joint generally characterized by a dry hinged connection, adopted to speed-up the construction phase. Another advantage of placing additional devices at the beam-to-column joint is the possibility to act as a fuse, concentrating the seismic damage on few sacrificial and replaceable elements. A procedure to design precast portal frames adopting additional devices is provided herein. The procedure moves from the Displacement-Based Design methodology proposed by M.J.N. Priestley, and it is applicable for both the design of new structures and the retrofit of existing ones. After the derivation of the required analytical formulations, the procedure is applied to select the additional devices for a new and an existing structural system. The validation through non-linear time history analyses allows to highlight the advantages and drawbacks of the considered devices and to prove the effectiveness of the proposed design procedure.


Sign in / Sign up

Export Citation Format

Share Document