scholarly journals Knowledge Criticality Assessment and Codification Framework for Major Maintenance Activities: A Case Study of Cement Rotary Kiln Plant

2021 ◽  
Vol 13 (9) ◽  
pp. 4619
Author(s):  
Lilian. O. Iheukwumere-Esotu ◽  
Akilu Yunusa-Kaltungo

Maintenance experts involved in managing major maintenance activities such as; Major overhauls, outages, shutdowns and turnarounds (MoOSTs) are constantly faced with uncertainties during the planning and/or execution phases, which often stretches beyond the organisation’s standard operating procedures and require the intervention of staff expertise. This underpins a need to complement and sustain existing efforts in managing uncertainties in MoOSTs through the transformation of knowledgeable actions generated from experts’ tacit-based knowledge. However, a vital approach to achieve such transformation is by prioritising maintenance activities during MoOSTs. Two methods for prioritising maintenance activities were adopted in this study; one involved a traditional qualitative method for task criticality assessment. The other, a quantitative method, utilised a Fuzzy inference system, mapping membership functions of two crisp inputs and output accompanied by If-Then rules specifically developed for this study. Prior information from a 5-year quantitative dataset was obtained from a case study with appreciable frequency for performing MoOSTs; in this case, a Rotary Kiln system (RKS) was utilised in demonstrating practical applicability. The selection of the two methods was informed by their perceived suitability to adequately analyse the available dataset. Results and analysis of the two methods indicated that the obtained Fuzzy criticality numbers were more sensitive and capable of examining the degree of changes to membership functions. However, the usefulness of the traditional qualitative method as a complementary approach lies in its ability to provide a baseline for informing expert opinions, which are critical in developing specific If-Then rules for the Fuzzy inference system.

Author(s):  
Nor Najwa Irina Mohd Azlan ◽  
Marlinda Abdul Malek ◽  
Maslina Zolkepli ◽  
Jamilah Mohd Salim ◽  
Ali Najah Ahmed

2013 ◽  
Vol 385-386 ◽  
pp. 1411-1414 ◽  
Author(s):  
Xue Bo Jin ◽  
Jiang Feng Wang ◽  
Hui Yan Zhang ◽  
Li Hong Cao

This paper describes an architecture of ANFIS (adaptive network based fuzzy inference system), to the prediction of chaotic time series, where the goal is to minimize the prediction error. We consider the stock data as the time series. This paper focuses on how the stock data affect the prediction performance. In the experiments we changed the number of data as input of the ANFIS model, the type of membership functions and the desired goal error, thereby increasing the complexity of the training.


Electronics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1915
Author(s):  
Shupei Chen ◽  
Zhigang Chen ◽  
Jia Wu ◽  
Kanghuai Liu

In opportunistic networks, the requirement of QoS (quality of service) poses several major challenges to wireless mobile devices with limited cache and energy. This implies that energy and cache space are two significant cornerstones for the structure of a routing algorithm. However, most routing algorithms tackle the issue of limited network resources from the perspective of a deterministic approach, which lacks an adaptive data transmission mechanism. Meanwhile, these methods show a relatively low scalability because they are probably built up based on some special scenarios rather than general ones. To alleviate the problems, this paper proposes an adaptive delay-tolerant routing algorithm (DTCM) utilizing curve-trapezoid Mamdani fuzzy inference system (CMFI) for opportunistic social networks. DTCM evaluates both the remaining energy level and the remaining cache level of relay nodes (two-factor) in opportunistic networks and makes reasonable decisions on data transmission through CMFI. Different from the traditional fuzzy inference system, CMFI determines three levels of membership functions through the trichotomy law and evaluates the fuzzy mapping from two-factor fuzzy input to data transmission by curve-trapezoid membership functions. Our experimental results show that within the error interval of 0.05~0.1, DTCM improves delivery ratio by about 20% and decreases end-to-end delay by approximate 25% as compared with Epidemic, and the network overhead from DTCM is in the middle horizon.


2018 ◽  
Vol 9 (4) ◽  
pp. 2215-2226 ◽  
Author(s):  
Sushri Samita Rout ◽  
Bijan Bihari Misra ◽  
Sasmita Samanta

Sign in / Sign up

Export Citation Format

Share Document