scholarly journals In-Situ Water Quality Observations under a Large-Scale Floating Solar Farm Using Sensors and Underwater Drones

2021 ◽  
Vol 13 (11) ◽  
pp. 6421
Author(s):  
Rui L. Pedroso de Lima ◽  
Katerina Paxinou ◽  
Floris C. Boogaard ◽  
Olof Akkerman ◽  
Fen-Yu Lin

The rapid implementation of large scale floating solar panels has consequences to water quality and local ecosystems. Environmental impacts depend on the dimensions, design and proportions of the system in relation to the size of the surface water, as well as the characteristics of the water system (currents, tidal effects) and climatic conditions. There is often no time (and budget) for thorough research into these effects on ecology and water quality. A few studies have addressed the potential impacts of floating solar panels, but often rely on models without validation with in situ data. In this work, water quality sensors continuously monitored key water quality parameters at two different locations: (i) underneath a floating solar park; (ii) at a reference location positioned in open water. An underwater drone was used to obtain vertical profiles of water quality and to collect underwater images. The results showed little differences in the measured key water quality parameters below the solar panels. The temperature at the upper layers of water was lower under the solar panels, and there were less detected temperature fluctuations. A biofouling layer on the floating structure was visible in the underwater images a few months after the construction of the park.

2014 ◽  
Vol 2 (3) ◽  
Author(s):  
Wihelmina Dimara ◽  
Edwin D Ngangi ◽  
Lukas L.J.J Mondoringin

The objective of this research was to evaluate the suitability of several environment factors and water quality parameters for development of seaweed culture in Kampung Sakabu.  The research was conducted through observation at three stations while protection factor and bottom substrate of waters were observed visually. Water quality parameters including pH, salinity, current rate, temperature were measured in situ and the compared to Standard Water Quality Citeria by Bakosurtanal 1996.  Research results were divided into three suitability categories namely 1) very suitable, 2) suitable, and 3) less suitable.  In general, environmental condition and water quatily in Kampung Sakabu were categorized as suitable to very suitable. This results indicated that         waters of Kampung Sakabu was very potential for development of seaweed culture. Keywords:  Kampung Sakabu, seaweeds, area suitability, water quality


Pathogens ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 567 ◽  
Author(s):  
Helen Y. Buse ◽  
Brian J. Morris ◽  
Vicente Gomez-Alvarez ◽  
Jeffrey G. Szabo ◽  
John S. Hall

Understanding Legionella survival mechanisms within building water systems (BWSs) is challenging due to varying engineering, operational, and water quality characteristics unique to each system. This study aimed to evaluate Legionella, mycobacteria, and free-living amoebae occurrence within a BWS over 18–28 months at six locations differing in plumbing material and potable water age, quality, and usage. A total of 114 bulk water and 57 biofilm samples were analyzed. Legionella culturability fluctuated seasonally with most culture-positive samples being collected during the winter compared to the spring, summer, and fall months. Positive and negative correlations between Legionella and L. pneumophila occurrence and other physiochemical and microbial water quality parameters varied between location and sample types. Whole genome sequencing of 19 presumptive Legionella isolates, from four locations across three time points, identified nine isolates as L. pneumophila serogroup (sg) 1 sequence-type (ST) 1; three as L. pneumophila sg5 ST1950 and ST2037; six as L. feeleii; and one as Ochrobactrum. Results showed the presence of a diverse Legionella population with consistent and sporadic occurrence at four and two locations, respectively. Viewed collectively with similar studies, this information will enable a better understanding of the engineering, operational, and water quality parameters supporting Legionella growth within BWSs.


2020 ◽  
Vol 8 (3) ◽  
pp. 172-185
Author(s):  
Juan G. Arango ◽  
Brandon K. Holzbauer-Schweitzer ◽  
Robert W. Nairn ◽  
Robert C. Knox

The focus of this study was to develop true reflectance surfaces in the visible portion of the electromagnetic spectrum from small unmanned aerial system (sUAS) images obtained over large bodies of water when no ground control points were available. The goal of the research was to produce true reflectance surfaces from which reflectance values could be extracted and used to estimate optical water quality parameters utilizing limited in-situ water quality analyses. Multispectral imagery was collected using a sUAS equipped with a multispectral sensor, capable of obtaining information in the blue (0.475 μm), green (0.560 μm), red (0.668 μm), red edge (0.717 μm), and near infrared (0.840 μm) portions of the electromagnetic spectrum. To develop a reliable and repeatable protocol, a five-step methodology was implemented: (i) image and water quality data collection, (ii) image processing, (iii) reflectance extraction, (iv) statistical interpolation, and (v) data validation. Results indicate that the created protocol generates geolocated and radiometrically corrected true reflectance surfaces from sUAS missions flown over large bodies of water. Subsequently, relationships between true reflectance values and in-situ water quality parameters were developed.


2020 ◽  
Author(s):  
Dainis Jakovels ◽  
Agris Brauns ◽  
Jevgenijs Filipovs ◽  
Tuuli Soomets

<p>Lakes and water reservoirs are important ecosystems providing such services as drinking water, recreation, support for biodiversity as well as regulation of carbon cycling and climate. There are about 117 million lakes worldwide and a high need for regular monitoring of their water quality. European Union Water Framework Directive (WFD) stipulates that member states shall establish a programme for monitoring the ecological status of all water bodies larger than 50 ha, in order to ensure future quality and quantity of inland waters. But only a fraction of lakes is included in in-situ monitoring networks due to limited resources. In Latvia, there are 2256 lakes larger than 1 ha covering 1.5% of Latvian territory, and approximately 300 lakes are larger than 50 ha, but only 180 are included in Inland water monitoring program, in addition, most of them are monitored once in three to six years. Besides, local municipalities are responsible for the management of lakes, and they are also interested in the assessment of ecological status and regular monitoring of these valuable assets. </p><p>Satellite data is a feasible way to monitor lakes over a large region with reasonable frequency and support the WFD status assessment process. There are several satellite-based sensors (eg. MERIS, MODIS, OLCI) available specially designed for monitoring of water quality parameters, however, they are limited only to use for large water bodies due to a coarse spatial resolution (250...1000 m/pix). Sentinel-2 MSI is a space-borne instrument providing 10...20 m/pix multispectral data on a regular basis (every 5 days at the equator and 2..3 days in Latvia), thus making it attractive for monitoring of inland water bodies, especially the small ones (<1 km<sup>2</sup>). </p><p>Development of Sentinel-2 satellite data-based service (SentiLake) for monitoring of Latvian lakes is being implemented within the ESA PECS for Latvia program. The pilot territory covers two regions in Latvia and includes more than 100 lakes larger than 50 ha. Automated workflow for selecting and processing of available Sentinel-2 data scenes for extracting of water quality parameters (chlorophyll-a and TSM concentrations) for each target water body has been developed. Latvia is a northern country with a frequently cloudy sky, therefore, optical remote sensing is challenging in or region. However, our results show that 1...4 low cloud cover Sentinel-2 data acquisitions per month could be expected due to high revisit frequency of Sentinel-2 satellites. Combination of C2X and C2RCC processors was chosen for the assessment of chl-a concentration showing the satisfactory performance - R<sup>2</sup> = 0,82 and RMSE = 21,2 µg/l. Chl-a assessment result is further converted and presented as a lake quality class. It is expected that SentiLake will provide supplementary data to limited in situ data for filling gaps and retrospective studies, as well as a visual tool for communication with the target audience.</p>


2015 ◽  
Vol 7 (2) ◽  
pp. 319-348 ◽  
Author(s):  
B. Nechad ◽  
K. Ruddick ◽  
T. Schroeder ◽  
K. Oubelkheir ◽  
D. Blondeau-Patissier ◽  
...  

Abstract. The use of in situ measurements is essential in the validation and evaluation of the algorithms that provide coastal water quality data products from ocean colour satellite remote sensing. Over the past decade, various types of ocean colour algorithms have been developed to deal with the optical complexity of coastal waters. Yet there is a lack of a comprehensive intercomparison due to the availability of quality checked in situ databases. The CoastColour Round Robin (CCRR) project, funded by the European Space Agency (ESA), was designed to bring together three reference data sets using these to test algorithms and to assess their accuracy for retrieving water quality parameters. This paper provides a detailed description of these reference data sets, which include the Medium Resolution Imaging Spectrometer (MERIS) level 2 match-ups, in situ reflectance measurements, and synthetic data generated by a radiative transfer model (HydroLight). These data sets, representing mainly coastal waters, are available from doi:10.1594/PANGAEA.841950. The data sets mainly consist of 6484 marine reflectance (either multispectral or hyperspectral) associated with various geometrical (sensor viewing and solar angles) and sky conditions and water constituents: total suspended matter (TSM) and chlorophyll a (CHL) concentrations, and the absorption of coloured dissolved organic matter (CDOM). Inherent optical properties are also provided in the simulated data sets (5000 simulations) and from 3054 match-up locations. The distributions of reflectance at selected MERIS bands and band ratios, CHL and TSM as a function of reflectance, from the three data sets are compared. Match-up and in situ sites where deviations occur are identified. The distributions of the three reflectance data sets are also compared to the simulated and in situ reflectances used previously by the International Ocean Colour Coordinating Group (IOCCG, 2006) for algorithm testing, showing a clear extension of the CCRR data which covers more turbid waters.


2018 ◽  
Vol 25 (10) ◽  
pp. 9485-9500 ◽  
Author(s):  
Thaís Dalzochio ◽  
Gabriela Zimmermann Prado Rodrigues ◽  
Leonardo Airton Ressel Simões ◽  
Mateus Santos de Souza ◽  
Ismael Evandro Petry ◽  
...  

2015 ◽  
Vol 1 (1) ◽  
pp. 95-102
Author(s):  
Md Mamunur Rahman ◽  
Gias Uddin Ahmed ◽  
Md Tawhid Hasan

Seasonal variation of water quality parameters and health condition of some small endangered open water fishes are Baila (Glossogobius giuris), Gutum (Lepidocephalichthys guntea) and Tara baim (Macrognathus aculeatus) was carried out through clinical and histological observation from Kailla beel of Ishargonj upazila, Mymensingh and Surma river, Gobindogonj upazila, Sunamgonj district, Sylhet region for a period of eight months from September 2014 to April 2015. Water quality parameters like water temperature, dissolved oxygen, pH, ammonia, alkalinity, hardness, and nitrate were recorded. Water temperature, pH, alkalinity and hardness were found at unfavorable level for fish in mid November and January. Clinical examinations of the fish were carried out at monthly intervals and any kind of abnormalities were recorded. Clinically it was observed that, fish was affected with fin and tail rot, gill rot, parasitic infestation, nutritional deformities, numerous red spots and patches in lateral and ventral regions, large deep whitish ulcers reached up to deep ulcers especially in December and January in both region. Samples of skin, muscle, gill, liver and kidney were collected and processed for histological observations. Major pathology in the skin and muscle were epidermis separated from dermis, presence of fungal granuloma, vacuums, hemorrhage and necrosis. Loss of primary and secondary gill lamellae, hypertrophy and primary gill lamellae separated, necrosis and hemorrhage were found in the gill. Large vacuums, necrosis and hemorrhage were observed in liver and kidney. Among the affected fish organs skin and muscle, gills were more affected than the internal organs like liver and kidney. Overall, clinical and histological observations of fishes were found to be more affected in December and January. Whereas, in the months of mid February to April, the pathological condition of fish gradually healed up to normal except few vacuums and hemorrhage. Under histopathological observations, fishes of Kailla beel were more affected than the fishes of surma river. In clinical and histopathological observation open water fishes were more susceptible due to EUS.Asian J. Med. Biol. Res. June 2015, 1(1): 95-102


Author(s):  
Ronald Muchini ◽  
Webster Gumindoga ◽  
Sydney Togarepi ◽  
Tarirai Pinias Masarira ◽  
Timothy Dube

Abstract. Zimbabwe's water resources are under pressure from both point and non-point sources of pollution hence the need for regular and synoptic assessment. In-situ and laboratory based methods of water quality monitoring are point based and do not provide a synoptic coverage of the lakes. This paper presents novel methods for retrieving water quality parameters in Chivero and Manyame lakes, Zimbabwe, from remotely sensed imagery. Remotely sensed derived water quality parameters are further validated using in-situ data. It also presents an application for automated retrieval of those parameters developed in VB6, as well as a web portal for disseminating the water quality information to relevant stakeholders. The web portal is developed, using Geoserver, open layers and HTML. Results show the spatial variation of water quality and an automated remote sensing and GIS system with a web front end to disseminate water quality information.


2021 ◽  
Vol 13 (9) ◽  
pp. 1603
Author(s):  
Bazel Al-Shaibah ◽  
Xingpeng Liu ◽  
Jiquan Zhang ◽  
Zhijun Tong ◽  
Mingxi Zhang ◽  
...  

Erlong Lake is considered one of the largest lakes in midwest Jilin, China, and one of the drinking water resources in neighboring cities. The present study aims to explore the usage of Landsat TM5, ETM7, and OLI8 images to assess water quality (V-phenol, dissolved oxygen (DO), NH4-N, NO3-N) in Erlong Lake, Jilin province, northeast China. Thirteen multispectral images were used in this study for May, July, August, and September in 2000, 2001, 2002, and October 2020. Radiometric and atmospheric corrections were applied to all images. All in situ water quality parameters were strongly correlated to each other, except DO. The in situ measurements (V-phenol, dissolved oxygen, NH4-N, NO3-N) were statistically correlated with various spectral band combinations (blue, green, red, and NIR) derived from Landsat imagery. Regression analysis reported that there are strong relationships between the estimated and retrieved water quality from the Landsat images. Moreover, in calibrations, the highest value of the coefficient of determination (R2) was ≥0.85 with (RMSE) = 0.038; the lowest value of R2 was >0.30 with RMSE= 0.752. All generated models were validated in different statistical indices; R2 was up to 0.95 for most cases, with RMSE ranging from 1.390 to 0.050. Finally, the empirical algorithms were successfully assessed (V-phenol, dissolved oxygen, NH4-N, NO3-N) in Erlong Lake, using Landsat images with very good accuracy. Both in situ and model retrieved results showed the same trends with non-significant differences. September of 2000, 2001, and 2002 and October of 2020 were selected to assess the spatial distributions of V-phenol, DO, NH4-N, and NO3-N in the lake. V-phenol, NH4-N, and NO3-N were reported low in shallow water but high in deep water, while DO was high in shallow water but low in deep water of the lake. Domestic sewage, agricultural, and urban industrial pollution are the most common sources of pollution in the Erlong Lake.


Sign in / Sign up

Export Citation Format

Share Document