scholarly journals Analyzing Prospective Owners’ Choice Decision towards Plug-in Hybrid Electric Vehicles in Urban India: A Stated Preference Discrete Choice Experiment

2021 ◽  
Vol 13 (14) ◽  
pp. 7725
Author(s):  
Reema Bera ◽  
Bhargab Maitra

Plug-in Hybrid Electric Vehicles (PHEVs) can help decarbonize road transport in urban India. To accelerate the diffusion of PHEVs, investigation of commuter preferences towards the attributes of PHEVs is necessary. Therefore, the present study analyzes prospective owners’ choice decisions towards PHEVs in a typical Indian context. A stated preference survey was designed to collect responses from the current owners of conventional vehicles (CVs) in Delhi, India, and Mixed Logit (ML) models were developed to estimate commuters’ Willingness To Pay (WTP) for a set of key PHEV-specific attributes. The decomposition effect of prospective owners’ sociodemographic characteristics and trip characteristics on the mean estimates of random parameters was investigated by developing ML models with heterogeneity. Subsequently, the influence of improvement of each PHEV-specific attribute on prospective owners’ choice probability was investigated by calculating marginal effects. Among the various PHEV-specific attributes considered in the present study, high WTPs are observed for decrease in battery recharging time, reduction in tailpipe emission and increase in electric range. Therefore, an added emphasis on these attributes by vehicle manufacturers is likely to enhance the attractiveness of PHEVs to Indian commuters. The results also highlight the importance of government subsidy for promoting PHEVs in the Indian market. Prospective owners’ income, availability of home-based parking space, and average daily trip length are found to significantly influence the choice decision of Indian commuters towards PHEVs.

Author(s):  
Je-Liang Liou ◽  
Pei-Ing Wu

This is the first study to provide a systematic monetary benefit matrix, including greenhouse gas (GHG) emissions reduction benefits and air pollution reduction health co-benefits, for a change in on-the-road transport to low-carbon types. The benefit transfer method is employed to estimate the social cost of carbon and the health co-benefits via impact pathway analysis in Taiwan. Specifically, the total emissions reduction benefits from changing all internal combustion vehicles to either hybrid electric vehicles, plug-in hybrid electric vehicles, or electric vehicles would generate an average of US$760 million from GHG emissions reduction and US$2,091 million from health co-benefits based on air pollution reduction, for a total benefit of US$2,851 million annually. For a change from combustion scooters to light- or heavy-duty electric scooters, the average GHG emissions reduction benefits would be US$96.02 million, and the health co-benefits from air pollution reduction would be US$1,008.83 million, for total benefits of US$1,104.85 million annually.


2018 ◽  
Author(s):  
Umanand L

This article presents a frank and open opinion on the challenges that will be faced in moving towards an electric mass transport ecosystem. World over there is considerable research activity on electric vehicles and hybrid electric vehicles. There seems to be a global effort to move from an ICE driven ecosystem to electric vehicle ecosystem. There is no simple means to make this transition. This road is filled with hurdles and challenges. This paper poses and discusses these challenges and possible solutions for enabling EVs.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5538
Author(s):  
Bảo-Huy Nguyễn ◽  
João Pedro F. Trovão ◽  
Ronan German ◽  
Alain Bouscayrol

Optimization-based methods are of interest for developing energy management strategies due to their high performance for hybrid electric vehicles. However, these methods are often complicated and may require strong computational efforts, which can prevent them from real-world applications. This paper proposes a novel real-time optimization-based torque distribution strategy for a parallel hybrid truck. The strategy aims to minimize the engine fuel consumption while ensuring battery charge-sustaining by using linear quadratic regulation in a closed-loop control scheme. Furthermore, by reformulating the problem, the obtained strategy does not require the information of the engine efficiency map like the previous works in literature. The obtained strategy is simple, straightforward, and therefore easy to be implemented in real-time platforms. The proposed method is evaluated via simulation by comparison to dynamic programming as a benchmark. Furthermore, the real-time ability of the proposed strategy is experimentally validated by using power hardware-in-the-loop simulation.


Sign in / Sign up

Export Citation Format

Share Document