scholarly journals Blockchain-Based Peer-to-Peer Energy Trading and Charging Payment System for Electric Vehicles

2021 ◽  
Vol 13 (14) ◽  
pp. 7962
Author(s):  
Prince Waqas Khan ◽  
Yung-Cheol Byun

The world is moving rapidly from carbon-producing vehicles to green transportation systems. Electric vehicles (EV) are a big step towards a friendly mode of transport. With the constant rise in the number of electric vehicles, we need a widespread and seamless charging infrastructure that supports seamless charging and billing. Some users generate electricity using solar panels and charge their electric vehicles. In contrast, some use charging stations, and they pay for vehicle charging. This raises the question of trust and transparency. There are many countries where laws are not strictly enforced to prevent fraud in payment systems. One of the preeminent problems presently existing with any of the trading systems is the lack of transparency. The service provider can overcharge the customer. Blockchain is a modern-day solution that mitigates trust and privacy issues. We have proposed a peer-to-peer energy trading and charging payment system for electric vehicles based on blockchain technology. Users who have excess electricity which they can sell to the charging stations through smart contracts. Electric vehicle users can pay the charging bills through electronic wallets. We have developed the electric vehicle’s automatic-payment system using the open-source platform Hyperledger fabric. The proposed system will reduce human interaction and increase trust, transparency, and privacy among EV participants. We have analyzed the resource utilization and also performed average transaction latency and throughput evaluation. This system can be helpful for the policymakers of smart cities.

Clean Energy ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 104-123
Author(s):  
Manish Kumar Thukral

Abstract Renewable-energy resources require overwhelming adoption by the common masses for safeguarding the environment from pollution. In this context, the prosumer is an important emerging concept. A prosumer in simple terms is the one who consumes as well as produces electricity and sells it either to the grid or to a neighbour. In the present scenario, peer-to-peer (P2P) energy trading is gaining momentum as a new vista of research that is viewed as a possible way for prosumers to sell energy to neighbours. Enabling P2P energy trading is the only method of making renewable-energy sources popular among the common masses. For making P2P energy trading successful, blockchain technology is sparking considerable interest among researchers. Combined with smart contracts, a blockchain provides secure tamper-proof records of transactions that are recorded in distributed ledgers that are immutable. This paper explores, using a thorough review of recently published research work, how the existing power sector is reshaping in the direction of P2P energy trading with the application of blockchain technology. Various challenges that are being faced by researchers in the implementation of blockchain technology in the energy sector are discussed. Further, this paper presents different start-ups that have emerged in the energy-sector domain that are using blockchain technology. To give insight into the application of blockchain technology in the energy sector, a case of the application of blockchain technology in P2P trading in electrical-vehicle charging is discussed. At the end, some possible areas of research in the application of blockchain technology in the energy sector are discussed.


2021 ◽  
Author(s):  
Nasser Al-Saif ◽  
Raja Wasim Ahmad ◽  
Khaled Salah ◽  
Ibrar Yaqoob ◽  
Raja Jayaraman ◽  
...  

Today's technologies, techniques, and systems leveraged for managing energy trading operations in electric vehicles fall short in providing operational transparency, immutability, fault tolerance, traceability, and trusted data provenance features. They are centralized and vulnerable to the single point of failure problem, and less trustworthy as they are prone to the data modifications and deletion by adversaries. In this paper, we present the potential advantages of blockchain technology to manage energy trading operations between electric vehicles as it can offer data traceability, immutability, transparency, audit, security, and confidentiality in a fully decentralized manner. We identify and discuss the essential requirements for the successful implementation of blockchain technology to secure energy trading operations among electric vehicles. We present a detailed discussion on the potential opportunities offered by blockchain technology to secure the energy trading operations of electric vehicles. We discuss several blockchain-based research projects and case studies to highlight the practicability of blockchain technology in electric vehicles energy trading. Finally, we identify and discuss open challenges in fulfilling the requirements of electric vehicles energy trading applications.


Energies ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 3317 ◽  
Author(s):  
Asma Khatoon ◽  
Piyush Verma ◽  
Jo Southernwood ◽  
Beth Massey ◽  
Peter Corcoran

Blockchain technology is ready to disrupt nearly every industry and business model, and the energy sector is no exception. Energy businesses across the world have already started exploring the use of blockchain technology in large-scale energy trading systems, peer-to-peer energy trading, project financing, supply chain tracking, and asset management among other applications. Information and Communication Technologies (ICTs) recently started revolutionizing the energy landscape, and now blockchain technology is providing an additional opportunity to make the energy system more intelligent, efficient, transparent, and secure in the longer term. The idea of this paper is to examine more closely the use of blockchain technology for its possible application in the energy efficiency industry and to determine how it could make energy efficiency markets more secure and transparent in the longer term. This paper examines in detail the key benefits and implications of using blockchain in the energy efficiency sector through the presentation and discussion of two case studies as possible blockchain applications—(i) the UK Energy Company Obligation scheme and (ii) the Italian White Certificate Scheme. We have presented how the key issues around trading energy efficiency savings—correctly estimating the savings, data transparency among stakeholders, and inefficient administrative processes—can be solved through the application of a blockchain-based smart contract system. Finally, this paper presents an implementation of a smart contract for trading of energy-saving certificates achieved via execution of smart contract transactions on the Ethereum blockchain.


2021 ◽  
Vol 282 ◽  
pp. 116123
Author(s):  
Ayman Esmat ◽  
Martijn de Vos ◽  
Yashar Ghiassi-Farrokhfal ◽  
Peter Palensky ◽  
Dick Epema

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 195632-195644
Author(s):  
Usman Mussadiq ◽  
Anzar Mahmood ◽  
Saeed Ahmed ◽  
Sohail Razzaq ◽  
Insoo Koo

Sensors ◽  
2020 ◽  
Vol 20 (14) ◽  
pp. 3928 ◽  
Author(s):  
Rateb Jabbar ◽  
Mohamed Kharbeche ◽  
Khalifa Al-Khalifa ◽  
Moez Krichen ◽  
Kamel Barkaoui

The concept of smart cities has become prominent in modern metropolises due to the emergence of embedded and connected smart devices, systems, and technologies. They have enabled the connection of every “thing” to the Internet. Therefore, in the upcoming era of the Internet of Things, the Internet of Vehicles (IoV) will play a crucial role in newly developed smart cities. The IoV has the potential to solve various traffic and road safety problems effectively in order to prevent fatal crashes. However, a particular challenge in the IoV, especially in Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) communications, is to ensure fast, secure transmission and accurate recording of the data. In order to overcome these challenges, this work is adapting Blockchain technology for real time application (RTA) to solve Vehicle-to-Everything (V2X) communications problems. Therefore, the main novelty of this paper is to develop a Blockchain-based IoT system in order to establish secure communication and create an entirely decentralized cloud computing platform. Moreover, the authors qualitatively tested the performance and resilience of the proposed system against common security attacks. Computational tests showed that the proposed solution solved the main challenges of Vehicle-to-X (V2X) communications such as security, centralization, and lack of privacy. In addition, it guaranteed an easy data exchange between different actors of intelligent transportation systems.


Author(s):  
Christos G. Cassandras

Poor traffic management in urban environments is responsible for congestion, unnecessary fuel consumption and pollution. Based on new wireless sensor networks and the advent of battery-powered vehicles, this chapter describes three new systems that affect transportation in Smart Cities. First, a Smart Parking system which assigns and reserves an optimal parking space based on the driver's cost function, combining proximity to destination and parking cost. Second, a system to optimally allocate electric vehicles to charging stations and reserve spaces for them. Finally, we address the traffic light control problem by viewing the operation of an intersection as a stochastic hybrid system. Using Infinitesimal Perturbation Analysis (IPA), we derive on-line gradient estimates of a cost metric with respect to the controllable green and red cycle lengths and iteratively adjust light cycle lengths to improve (and possibly optimize) performance, as well as adapt to changing traffic conditions.


2020 ◽  
Vol 12 (18) ◽  
pp. 7343
Author(s):  
Junpeng Cai ◽  
Dewang Chen ◽  
Shixiong Jiang ◽  
Weijing Pan

With the increasing popularization and competition of electric vehicles (EVs), EV users often have anxiety on their trip to find better charging stations with less travel distance. An intelligent charging guidance strategy and two algorithms were proposed to alleviate this problem. First, based on the next destination of EV users’ trip, the strategy established a dynamic-area model to match charging stations with users’ travel demand intelligently. In the dynamic area, the Dijkstra algorithm is used to find the charging station with the shortest trip. Then, the area extension algorithm and the charging station attribution algorithm were developed to improve the robustness of the dynamic area. The two algorithms can automatically adjust the area size according to the number of charging stations in the dynamic area to reduce the number of nodes traversed by the Dijkstra algorithm. Finally, simulation examples were used to verify the effectiveness of the proposed model and algorithms. The results showed that the proposed intelligent charging guidance strategy can meet the travel demand of users. It is a promising technique in smart cities to find better travel trips with less travel distance and less computed time.


Author(s):  
Santiago de Diego ◽  
Inaki Seco ◽  
Marisa Escalante ◽  
Nikolaos Vakakis ◽  
Schoinas Alexandros ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document