scholarly journals A Comprehensive Review on Biofuels from Oil Palm Empty Bunch (EFB): Current Status, Potential, Barriers and Way Forward

2021 ◽  
Vol 13 (18) ◽  
pp. 10210
Author(s):  
Rozzeta Dolah ◽  
Rohit Karnik ◽  
Halimaton Hamdan

Biomass is an important renewable energy resource which primarily contributes to heating and cooling end use sectors. It is also a promising alternative source of biofuels to replace the depleting supply of fossil fuels. Surprisingly, few writers have been able to draw on the feedstock significance for oil palm empty fruit bunch (EFB) as the biomass resource for biofuels compared to the other types of biomass waste. Therefore, this paper presents a comprehensive review of EFB as a biomass resource presented in four major parts. First, the introduction covers the demand for bio-oil and describes the different kinds of feedstock, the relevance and potential of EFB biomass. Second, the characteristics of biomass are explained before it is upgraded as biofuel, drawing similarities and contrasts between EFB and other sources of biomass. Pyrolysis processes and reactors used for EFB conversion are described, and the factors affecting the bio-oil yield and quality are discussed. Major reactor parameters are summarized and reactor optimization is discussed. Third, comparison on the properties of the bio-oil vs. petroleum in transportation, power generation, and heating are compared followed by prioritizing the bio-oil properties from the most to least critical, revealing the most promising methods for upgrading. Fourth, the environmental impact, including CO2 emission, of the use of EFB as a promising renewable energy resource and a cleaner alternative fuel is recommended. This paper has comprehensively reviewed the conversion of oil palm empty fruit bunches into biofuels, including the similarities and differences between biomasses, the best reactors, its comparison with fossil fuels, and bio-oil upgrading methods. The upgrading mapping matrix is created to present the best upgrading strategies for the optimum quality of biofuels. This paper serves as a one-stop center for EFB conversion into biofuels.

Author(s):  
Ahmed Zkear Abass ◽  
D. A. Pavlyuchenko

<span>We have, an overview is presented of the potential future demands and possible supply of solar energy to Iraq. Solar energy, which is clean, unlimited, and environmentally friendly, is presented as a renewable energy resource. Many problems such as CO<sub>2</sub> emissions, industry, human activities, and electricity distribution grids have attracted much attention because of the current state of crude oil production and its prices. Moreover, estimations of solar radiation levels and of the efficiencies of photovoltaics (PVs), concentrated solar power (CSP), and solar chimney towers, have all been investigated. Those systems that combine various sources of energy are called hybrids and they have received much attention in recent decades. The basic features of solar radiation in Iraq are outlined, and the selection of those sites with potential for development of solar plants is based on the local largest solar radiation. Moreover, longitudinal and latitudinal orientation, wind, solar intensity, dust, temperature, rain, humidity, and pollution factors are all considered in the calculation of PV/CSP efficiencies. We know there is an abundance of fossil fuels in Iraq, energy shortages began in 1991 because of the perturbation caused by the full ruin of the country. The obvious renewable energy resource available in Iraq is the solar energy, and its exploitation would provide a means to reduce CO<sub>2</sub> emissions from the burning of fossil fuels and to achieve self-sufficiency of electric energy and export the rest to neighboring countries. Solar energy is becoming increasingly important because of the climatic change in the form of global warming.</span>


2014 ◽  
Vol 906 ◽  
pp. 142-147 ◽  
Author(s):  
Nurul Suhada Ab Rasid ◽  
M. Asadullah

The increasing demand of energy has led to the development of renewable energy in order to mitigate the dependency of fossil fuels. Fast pyrolysis of biomass is one of the most anticipated renewable energy technologies since it has a huge potential to become the efficient, environmentally sustainable, and cost effective technology for energy. Fast pyrolysis process produces liquid bio-oil as a main product, along with solid char and combustible gas. Bio-oil can be utilized for heat and power generation as well as it can be used as a feedstock for pure chemicals production. Over the last decades, numerous researches have been conducted in order to develop the process in terms of reactor design and process optimization in order to achieve the high yield of liquid with high organics and less water content. The aim of this review is to provide the state of the art on fast pyrolysis of biomass with some suggestions presented on upgrading the bio-oil. Based on the recent reactor configurations, current status of biomass fast pyrolysis in commercial scale around the world, the fuel and chemical characteristic of bio-oil compared to the conventional fossil fuels, and the potential application of bio-oil in the future, some recommendations are proposed.


RSC Advances ◽  
2017 ◽  
Vol 7 (57) ◽  
pp. 35581-35589 ◽  
Author(s):  
Kamonlatth Rodponthukwaji ◽  
Chularat Wattanakit ◽  
Thittaya Yutthalekha ◽  
Sunpet Assavapanumat ◽  
Chompunuch Warakulwit ◽  
...  

Biomass is an interesting renewable energy resource as it is widespread in nature and low cost.


2010 ◽  
Vol 14 (2) ◽  
pp. 798-805 ◽  
Author(s):  
Jing Yan Tock ◽  
Chin Lin Lai ◽  
Keat Teong Lee ◽  
Kok Tat Tan ◽  
Subhash Bhatia

Sign in / Sign up

Export Citation Format

Share Document