scholarly journals Hybrid Economic-Environment-Ecology Land Planning Model under Uncertainty—A Case Study in Mekong Delta

2021 ◽  
Vol 13 (19) ◽  
pp. 10978
Author(s):  
Yuxiang Ma ◽  
Min Zhou ◽  
Chaonan Ma ◽  
Mengcheng Wang ◽  
Jiating Tu

The research on land natural resources as the leading factor in the Mekong Delta (MD) is insufficient. Facing the fragile and sensitive ecological environment of MD, how to allocate limited land resources to different land use types to obtain more economic benefits is a challenge that local land managers need to face. Three uncertainties in land use system, interval uncertainty, fuzzy uncertainty, and random uncertainty, are fully considered and an interval probabilistic fuzzy land use allocation (IPF-LUA) model is proposed and applied to multiple planning periods for MD. IPF-LUA considers not only the crucial socio-economic factors (food security, output of wood products, etc.) but also the ecological/environmental constraints in agricultural production (COD discharge, BOD5 discharge, antibiotic consumption, etc.). Therefore, it can effectively reflect the interaction among different aspects of MD land use system. The degree of environmental subordination is between 0.51 and 0.73, the net benefit of land system is between USD 23.31 × 109 and USD 24.24 × 109 in period 1, and USD 25.44 × 109 to 25.68 × 109 in period 2. The results show that the IPF-LUA model can help the decision-makers weigh the economic and ecological benefits under different objectives and work out an optimized land use allocation scheme.

2016 ◽  
Vol 44 (1) ◽  
pp. 54-79 ◽  
Author(s):  
Shukui Tan ◽  
Lu Zhang ◽  
Min Zhou ◽  
Yanan Li ◽  
Siliang Wang ◽  
...  

Various uncertainties exist in most urban land-use allocation systems; however, they have not been considered in most traditional urban land-use allocation methods. In this study, an interval-probabilistic urban land-use allocation model is developed based on a hybrid interval-probabilistic programming method. The developed interval-probabilistic urban land-use allocation model can deal with uncertainties expressed as intervals and probability distributions; moreover, it can also help examine the reliability of satisfying (or risk of violating) system constraints under uncertainty; the interval-probabilistic urban land-use allocation model not only considers economic factors, but also involves environmental and ecological constraints, which can effectively reflect various interrelations among different aspects in the urban land-use system. The developed model is applied to a case of long-term land-use allocation planning in the city of Wuhan, China. Interval solutions associated with different risk levels of constraint violation are obtained. The desired system benefit from the land-use system will be between $ [1781.921, 2290.970] × 109 under the minimum violating probabilities, and in this condition, the optimized areas of industrial land, commercial land and landfill will be [35,739, 42,402] ha, [58,572, 62,450] ha, and [903, 1087] ha. Results provide the decision makers of Wuhan with desired land-use allocation patterns and environmental policies, which are related to a variety of trade-offs between system benefit and constraint-violation risk. Willingness to accept low benefit from land-use system will guarantee meeting the environmental protection objective. A strong desire to acquire high system benefit will run into the risk of violating environmental constraint.


Author(s):  
Louis J. Pignataro ◽  
Joseph Wen ◽  
Robert Burchell ◽  
Michael L. Lahr ◽  
Ann Strauss-Wieder

The purpose of the Transportation Economic and Land Use System (TELUS) is to convert the transportation improvement program (TIP) into a management tool. Accordingly, the system provides detailed and easily accessible information on transportation projects in the region, as well as their interrelationships and impacts. By doing so, TELUS enables public-sector agencies to meet organizational, Intermodal Surface Transportation Efficiency Act, state, and other mandates more effectively. The objectives are accomplished by providing the computer-based capability to analyze, sort, combine, and track transportation projects in or under consideration for a TIP; assessing the interrelationships among significant transportation projects; estimating the regional economic and land use effects of transportation projects; and presenting project information in an easily understood format, including geographic information system formats.


2012 ◽  
Vol 227 ◽  
pp. 46-55 ◽  
Author(s):  
Szu-Hua Wang ◽  
Shu-Li Huang ◽  
William W. Budd

Author(s):  
P. G. Whitehead ◽  
J. Crossman ◽  
B. B. Balana ◽  
M. N. Futter ◽  
S. Comber ◽  
...  

The catchment of the River Thames, the principal river system in southern England, provides the main water supply for London but is highly vulnerable to changes in climate, land use and population. The river is eutrophic with significant algal blooms with phosphorus assumed to be the primary chemical indicator of ecosystem health. In the Thames Basin, phosphorus is available from point sources such as wastewater treatment plants and from diffuse sources such as agriculture. In order to predict vulnerability to future change, the integrated catchments model for phosphorus (INCA-P) has been applied to the river basin and used to assess the cost-effectiveness of a range of mitigation and adaptation strategies. It is shown that scenarios of future climate and land-use change will exacerbate the water quality problems, but a range of mitigation measures can improve the situation. A cost-effectiveness study has been undertaken to compare the economic benefits of each mitigation measure and to assess the phosphorus reductions achieved. The most effective strategy is to reduce fertilizer use by 20% together with the treatment of effluent to a high standard. Such measures will reduce the instream phosphorus concentrations to close to the EU Water Framework Directive target for the Thames.


Land ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 57
Author(s):  
Fernando Allende Álvarez ◽  
Gillian Gómez-Mediavilla ◽  
Nieves López-Estébanez ◽  
Pedro Molina Holgado ◽  
Judith Ares Barajas

The present paper highlights the importance of hedgerows and enclosures in the mountains of Central Spain. Now, these landscapes have suffered profound variations in terms of agroforestry practices, especially in the Mediterranean mountains where the characteristic multifunctional has largely been lost. The article analyzes land uses changes, dynamics, and their morphological features between the first half of the 20th Century (1956) and the second decade of the present time (2019). The paper was divided into three sections. First, the identification of land uses using orthophotograph and aerial photograph; after that the info was checked with fieldwork. Eleven categories were identified according to the dominant use and land use changes and size of land parcels were taken into consideration. Second, the configuration and the information collected through the type and intensity of change in land uses made it possible to recognise and quantify their distribution and trend between these two dates. Also, the kernel density algorithm available in the Arcgis 10.5 software was used to obtain density and changes in land parcels. Finally, an overview is given of the main role that this agroforestry plays due to the social, ecological, and economic benefits that they provide for allowing sustainable development.


2021 ◽  
Vol 147 (4) ◽  
pp. 04021049
Author(s):  
Anne A. Gharaibeh ◽  
Mansoor H. Ali ◽  
Zaer S. Abo-Hammour ◽  
Mohammad Al Saaideh

Sign in / Sign up

Export Citation Format

Share Document