scholarly journals Factors Affecting Wind Power Efficiency: Evidence from Provincial-Level Data in China

2021 ◽  
Vol 13 (22) ◽  
pp. 12759
Author(s):  
Xiaoyan Sun ◽  
Wenwei Lian ◽  
Hongmei Duan ◽  
Anjian Wang

As a significant energy consumer, China is under tremendous pressure from the international community to address climate change issues by reducing carbon emissions; thus, the use of clean energy is imperative. Wind power is an essential source of renewable energy, and improving the efficiency of wind power generation will contribute substantially to China’s ability to achieve its energy-saving and emission reduction goals. This paper measured the wind power efficiency of 30 provinces in China from 2012 to 2017 using the data envelopment analysis (DEA) method. Moran’s I index and the spatial Durbin model were applied to analyse the spatial distribution of the wind power efficiency and the spatial effects of influencing factors. The results show obvious differences in the spatial distribution of wind power efficiency in China; specifically, the wind power efficiency in the eastern and western regions is higher than that in the central areas. Moreover, wind power efficiency has a significant positive spatial correlation between regions: the eastern and western regions show certain high-high clustering characteristics, and the central area shows certain low-low clustering characteristics. Among the influencing factors, the fixed asset investment and carbon emission intensity of the wind power property have a negative impact on the efficiency of regional wind power production, while the urbanization process and carbon emission intensity have significant spatial spillover effects. The optimization of the economic structure, technological innovation and the construction of energy infrastructure are expected to improve the regional wind power efficiency. The results present a new approach for accurately identifying the spatial characteristics of wind power efficiency and the spatial effects of the influencing factors, thus providing a reference for policymakers.

2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
Yi Huang ◽  
Bin Xia ◽  
Lei Yang

This study attempts to discuss the relationship between land use spatial distribution structure and energy-related carbon emission intensity in Guangdong during 1996–2008. We quantized the spatial distribution structure of five land use types including agricultural land, industrial land, residential and commercial land, traffic land, and other land through applying spatial Lorenz curve and Gini coefficient. Then the corresponding energy-related carbon emissions in each type of land were calculated in the study period. Through building the reasonable regression models, we found that the concentration degree of industrial land is negatively correlated with carbon emission intensity in the long term, whereas the concentration degree is positively correlated with carbon emission intensity in agricultural land, residential and commercial land, traffic land, and other land. The results also indicate that land use spatial distribution structure affects carbon emission intensity more intensively than energy efficiency and production efficiency do. These conclusions provide valuable reference to develop comprehensive policies for energy conservation and carbon emission reduction in a new perspective.


Author(s):  
Xuhui Ding ◽  
Zhongyao Cai ◽  
Qianqian Xiao ◽  
Suhui Gao

It is greatly important to promote low-carbon green transformations in China, for implementing the emission reduction commitments and global climate governance. However, understanding the spatial spillover effects of carbon emissions will help the government achieve this goal. This paper selects the carbon-emission intensity panel data of 11 provinces in the Yangtze River Economic Belt from 2004 to 2016. Then, this paper uses the Global Moran’s I to explore the spatial distribution characteristics and spatial correlation of carbon emission intensity. Furthermore, this paper constructs a spatial econometric model to empirically test the driving path and spillover effects of relevant factors. The results show that there is a significant positive correlation with the provincial carbon intensity in the Yangtze River Economic Belt, but this trend is weakening. The provinces of Jiangsu, Zhejiang, and Shanghai are High–High agglomerations, while the provinces of Yunnan and Guizhou are Low–Low agglomerations. Economic development, technological innovation, and foreign direct investion (FDI) have positive effects on the reduction of carbon emissions, while industrialization has a negative effect on it. There is also a significant positive spatial spillover effect of the industrialization level and technological innovation level. The spatial spillover effects of FDI and economic development on carbon emission intensity fail to pass a significance test. Therefore, it is necessary to promote cross-regional low-carbon development, accelerate the R&D of energy-saving and emission-reduction technologies, actively enhance the transformation and upgrade industrial structures, and optimize the opening up of the region and the patterns of industrial transfer.


2011 ◽  
Vol 99-100 ◽  
pp. 539-545
Author(s):  
Ya Zhang ◽  
You Liang Mao

Coming up with the idea of low-carbon economy, numerous studies both at home and abroad on carbon emissions have emerged, nonetheless of which seldom are studies aiming at specific executive agencies and supervisory authorities of government development plan at provincial administrative area level. This paper, by using calculation formulas in carbon emission calculation guide of IPCC and carbon emission coefficient default value, measured the carbon emissions of Yunnan Province during 1998 and 2008 and analyzed relative influencing factors. The study shows economic growth and industrial restructuring increase the carbon emission intensity which is not remarkably affected by energy restructuring. The key to decrease carbon emission intensity is enhancing energy efficiency.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Guoxing Zhang ◽  
Mingxing Liu

Based on 2002–2010 comparable price input-output tables, this paper first calculates the carbon emissions of China’s industrial sectors with three components by input-output subsystems; next, we decompose the three components into effect of carbon emission intensity, effect of social technology, and effect of final demand separately by structure decomposition analysis; at last, we analyze the contribution of every effect to the total emissions by sectors, thus finding the key sectors and key factors which induce the changes of carbon emissions in China’s industrial sectors. Our results show that in the latest 8 years five departments have gotten the greatest increase in the changes of carbon emissions compare with other departments and the effect of final demand is the key factor leading to the increase of industrial total carbon emissions. The decomposed effects show a decrease in carbon emission due to the changes of carbon emission intensity between 2002 and 2010 compensated by an increase in carbon emissions caused by the rise in final demand of industrial sectors. And social technological changes on the reduction of carbon emissions did not play a very good effect and need further improvement.


Sign in / Sign up

Export Citation Format

Share Document