scholarly journals Adaptive Nonsingular Fast Terminal Sliding Mode Control for Maximum Power Point Tracking of a WECS-PMSG

2021 ◽  
Vol 13 (23) ◽  
pp. 13427
Author(s):  
Muhammad Maaruf ◽  
Md Shafiullah ◽  
Ali T. Al-Awami ◽  
Fahad S. Al-Ismail

This paper investigates maximum power extraction from a wind-energy-conversion system (WECS) with a permanent magnet synchronous generator (PMSG) operating in standalone mode. This was achieved by designing a robust adaptive nonsingular fast terminal sliding mode control (ANFTSMC) for the WECS-PMSG. The proposed scheme guaranteed optimal power generation and suppressed the system uncertainties with a rapid convergence rate. Moreover, it is independent of the upper bounds of the system uncertainties as an online adjustment algorithm was utilized to estimate and compensate them. Finally, four case studies were carried out, which manifested the remarkable performance of ANFTSMC in comparison to previous methods reported in the literature.

Author(s):  
Mohammad Reza Salehi Kolahi ◽  
Mohammad Reza Gharib ◽  
Ali Heydari

This paper investigates a new disturbance observer based non-singular fast terminal sliding mode control technique for the path tracking and stabilization of non-linear second-order systems with compound disturbance. The compound disturbance is comprised of both parametric and non-parametric uncertainties. While warranting fast convergence rate and robustness, it also dominates the singularity and complex-value number issues associated with conventional terminal sliding mode control. Furthermore, due to the estimation properties of the observer, knowledge about the bounds of the uncertainties is not required. The simulation results of two case studies, the velocity and path tracking of an autonomous underwater vehicle and the stabilization of a chaotic Φ6-Duffing oscillator, validate the efficacy of the proposed method.


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Wei Gao ◽  
Xiuping Chen ◽  
Haibo Du ◽  
Song Bai

For the position tracking control problem of permanent magnet linear motor, an improved fast continuous-time nonsingular terminal sliding mode control algorithm based on terminal sliding mode control method is proposed. Specifically, first, for the second-order model of position error dynamic system, a new continuous-time fast terminal sliding surface is introduced and an improved continuous-time fast terminal sliding mode control law is proposed. Then rigorous theoretical analysis is provided to demonstrate the finite-time stability of the closed-loop system by using the Lyapunov function. Finally, numerical simulations are given to verify the effectiveness and advantages of the proposed fast nonsingular terminal sliding mode control method.


Sign in / Sign up

Export Citation Format

Share Document