scholarly journals Impact of Microplastics on Oil Dispersion Efficiency in the Marine Environment

2021 ◽  
Vol 13 (24) ◽  
pp. 13752
Author(s):  
Min Yang ◽  
Baiyu Zhang ◽  
Yifu Chen ◽  
Xiaying Xin ◽  
Kenneth Lee ◽  
...  

Oil spill and microplastics (MPs) pollution has raised global concerns, due to the negative impacts on ocean sustainability. Chemical dispersants were widely adopted as oil-spill-treating agents. When MPs exist during oil dispersion, MP/oil-dispersant agglomerates (MODAs) are observed. This study explored how MPs affect oil-dispersion efficiency in oceans. Results showed that, under dispersant-to-oil volumetric ratio (DOR) 1:10 and mixing energy of 200 rpm, the addition of MPs increased the oil droplet size, total oil volume concentration, and oil-dispersion efficiency. Under DOR 1:25 and mixing energy of 120 rpm, the addition of MPs increased the oil droplet size but resulted in a decrease of total oil volume concentration and dispersion efficiency. Compared with the oil volume concentration, the oil droplet size may no longer be an efficient parameter for evaluating oil-dispersion efficiency with the existence of MODAs. A machine learning (ML)-based XGBRegressor model was further constructed to predict how MPs affected oil volume concentration and oil-dispersion efficiency in oceans. The research outputs would facilitate decision-making during oil-spill responses and build a foundation for the risk assessment of oil and MP co-contaminants that is essential for maintaining ocean sustainability.

Heliyon ◽  
2020 ◽  
Vol 6 (12) ◽  
pp. e05788
Author(s):  
George Katsaros ◽  
Magdalini Tsoukala ◽  
Marianna Giannoglou ◽  
Petros Taoukis

2016 ◽  
Vol 17 (3) ◽  
pp. 91-94 ◽  
Author(s):  
Yayoi MIYAGAWA ◽  
Kohshi KIKUCHI ◽  
Hirokazu SHIGA ◽  
Shuji ADACHI

Soft Matter ◽  
2019 ◽  
Vol 15 (47) ◽  
pp. 9762-9775 ◽  
Author(s):  
Aakash Patel ◽  
Athira Mohanan ◽  
Supratim Ghosh

Sodium caseinate (SC)-stabilized 40% oil-in-water nanoemulsions (NEs) could be transformed into elastic gels below a critical droplet size due to increase in ϕeff by a thicker steric barrier of SC, while whey protein (WPI)-stabilized NEs remained liquid due to thinner steric barrier of WPI.


2010 ◽  
Vol 11 (2) ◽  
pp. 113-116
Author(s):  
Koji KAWAKAMI ◽  
Akiko FUJITA ◽  
Vita PARAMITA ◽  
Tze Loon NEOH ◽  
Hidefumi YOSHII

2017 ◽  
Vol 2017 (1) ◽  
pp. 1251-1266 ◽  
Author(s):  
Pu Li ◽  
Haibo Niu ◽  
Shihan Li ◽  
Rodrigo Fernandes ◽  
Ramiro Neves

Abstract 2017-184: Accidental release of pollutants such as offshore oil spills can cause significant negative impacts on the environment and socio-economy, and constitutes a direct hazard to marine life and human health. Particularly, deepwater blowout released spills are more challenging to study because the trajectory and behaviour of oil are difficult to be comprehensively simulated. Although there are many integrated or coupled models available, there still lacks open source deepwater oil spill models to predict not only the trajectory but also the mass balance of oil. It is the objective of this study to fill this gap by coupling the Texas A&M Oilspill Calculator (TAMOC) for nearfield simulation and the advanced oil spill module in the Modelo Hidrodinâmico (MOHID) 3D Water modeling system. In addition, the Weber number scaling approach is also integrated in both the near- and far-field simulation for oil droplet size prediction. The applicability of the proposed comprehensive system is tested by a case study of simulation of oil spills released from a depth of 3,500 m in the Scotian Shelf, Canada. The results demonstrate a high feasibility of the proposed system. By providing comprehensive simulation for oil spills, the developed system should provide significant support to the response to offshore oil spill, especially from deepwater blowout.


Sign in / Sign up

Export Citation Format

Share Document