oil droplet size
Recently Published Documents


TOTAL DOCUMENTS

103
(FIVE YEARS 35)

H-INDEX

15
(FIVE YEARS 2)

Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 327
Author(s):  
Wiphada Mitbumrung ◽  
Numphung Rungraung ◽  
Niramol Muangpracha ◽  
Ploypailin Akanitkul ◽  
Thunnalin Winuprasith

The pretreatment process is an essential step for nanofibrillated cellulose production as it enhances size reduction efficiency, reduces production cost, and decreases energy consumption. In this study, nanofibrillated cellulose (NFC) was prepared using various pretreatment processes, either chemical (i.e., acid, basic, and bleach) or hydrothermal (i.e., microwave and autoclave), followed by disintegration using high pressure homogenization from oat bran fibers. The obtained NFC were used as an emulsifier to prepare 10% oil-in-water emulsions. The emulsion containing chemically pretreated NFC exhibited the smallest oil droplet diameter (d32) at 3.76 μm, while those containing NFC using other pretreatments exhibited d32 values > 5 μm. The colors of the emulsions were mainly influenced by oil droplet size rather than the color of the fiber itself. Both NFC suspensions and NFC emulsions showed a storage modulus (G′) higher than the loss modulus (G″) without crossing over, indicating gel-like behavior. For emulsion stability, microwave pretreatment effectively minimized gravitational separation, and the creaming indices of all NFC-emulsions were lower than 6% for the entire storage period. In conclusion, chemical pretreatment was an effective method for nanofiber extraction with good emulsion capacity. However, the microwave with bleaching pretreatment was an alternative method for extracting nanofibers and needs further study to improve the efficiency.


RSC Advances ◽  
2022 ◽  
Vol 12 (4) ◽  
pp. 2160-2170
Author(s):  
Evangelia Argentou ◽  
Carlos Amador ◽  
Anju Deepali Massey Brooker ◽  
Serafim Bakalis ◽  
Peter J. Fryer ◽  
...  

The synergistic effect of oil viscosity and oil droplet size on the deposition profile of oil on cotton fabric was studied using polydimethylsiloxane (PDMS) as a model oil-in-water emulsion system.


2021 ◽  
Vol 13 (24) ◽  
pp. 13752
Author(s):  
Min Yang ◽  
Baiyu Zhang ◽  
Yifu Chen ◽  
Xiaying Xin ◽  
Kenneth Lee ◽  
...  

Oil spill and microplastics (MPs) pollution has raised global concerns, due to the negative impacts on ocean sustainability. Chemical dispersants were widely adopted as oil-spill-treating agents. When MPs exist during oil dispersion, MP/oil-dispersant agglomerates (MODAs) are observed. This study explored how MPs affect oil-dispersion efficiency in oceans. Results showed that, under dispersant-to-oil volumetric ratio (DOR) 1:10 and mixing energy of 200 rpm, the addition of MPs increased the oil droplet size, total oil volume concentration, and oil-dispersion efficiency. Under DOR 1:25 and mixing energy of 120 rpm, the addition of MPs increased the oil droplet size but resulted in a decrease of total oil volume concentration and dispersion efficiency. Compared with the oil volume concentration, the oil droplet size may no longer be an efficient parameter for evaluating oil-dispersion efficiency with the existence of MODAs. A machine learning (ML)-based XGBRegressor model was further constructed to predict how MPs affected oil volume concentration and oil-dispersion efficiency in oceans. The research outputs would facilitate decision-making during oil-spill responses and build a foundation for the risk assessment of oil and MP co-contaminants that is essential for maintaining ocean sustainability.


Author(s):  
Cosan Daskiran ◽  
Xinzhi Xue ◽  
Fangda Cui ◽  
Joseph Katz ◽  
Michel C. Boufadel

2021 ◽  
pp. 107278
Author(s):  
Davood Zaeim ◽  
Ana-Isabel Mulet-Cabero ◽  
Sophia A. Read ◽  
Weilin Liu ◽  
Jianzhong Han ◽  
...  

Author(s):  
Martha L. Taboada ◽  
Theresia Heiden‐Hecht ◽  
Monika Brückner‐Gühmann ◽  
Heike P. Karbstein ◽  
Stephan Drusch ◽  
...  

Drug Research ◽  
2021 ◽  
Author(s):  
Sushmita Srivastava ◽  
Md. Faheem Haider ◽  
Afroz Ahmad ◽  
Usama Ahmad ◽  
Muhammad Arif ◽  
...  

AbstractProstate carcinoma is typical cancer. It is the second most common cancer globally. The estimated new cases in 2020 was 191 930 and estimated deaths was 33 330. Age, family history, & genetic factors are major factors that drive prostate cancer. Although, for treating metastatic disease, the major therapies available are radiation,bisphosphonate, and palliative chemotherapy. But the major drawback is therapy is disease-driven and later becomes metastatic and requires treatment. The ability to revolutionize cancer treatment by major targeting vehicles via the exploration of nanoemulsion suggests a potential for cancer treatment. The unique property of a biphasic liquid dosage form called nanoemulsion to reach leaky tumor vasculature is due to its nano-meter oil-droplet size of 20–200 nm. Recent reporting on nanoemulsions disclose their embracing and lay alternative for re-purposing herbal and synthetic drugs and their combination especially for targeting prostate cancer formulating an obtainable nanomedicine. So, this article emphasizes the use of nanoemulsions incorporating therapeutic agents for successful and targeted delivery for prostate cancer.


Fluids ◽  
2021 ◽  
Vol 6 (6) ◽  
pp. 219
Author(s):  
Martha L. Taboada ◽  
Esteban Zapata ◽  
Heike P. Karbstein ◽  
Volker Gaukel

The goal of this study was to investigate oil droplet breakup in food emulsions during atomization with pressure swirl (PS), internal mixing (IM), and external mixing (EM) twin-fluid atomizers. By this, new knowledge is provided that facilitates the design of atomization processes, taking into account atomization performance as well as product characteristics (oil droplet size). Atomization experiments were performed in pilot plant scale at liquid volume flow rates of 21.8, 28.0, and 33.3 L/h. Corresponding liquid pressures in the range of 50–200 bar and air-to-liquid ratios in the range of 0.03–0.5 were applied. Two approaches were followed: oil droplet breakup was initially compared for conditions by which the same spray droplet sizes were achieved at constant liquid throughput. For all volume flow rates, the strongest oil droplet breakup was obtained with the PS nozzle, followed by the IM and the EM twin-fluid atomizer. In a second approach, the concept of energy density EV was used to characterize the sizes of resulting spray droplets and of the dispersed oil droplets in the spray. For all nozzles, Sauter mean diameters of spray and oil droplets showed a power-law dependency on EV. PS nozzles achieved the smallest spray droplet sizes and the strongest oil droplet breakup for a constant EV. In twin-fluid atomizers, the nozzle type (IM or EM) has a significant influence on the resulting oil droplet size, even when the resulting spray droplet size is independent of this nozzle type. Overall, it was shown that the proposed concept of EV allows formulating process functions that simplify the design of atomization processes regarding both spray and oil droplet sizes.


2021 ◽  
Author(s):  
Hongwei Shen ◽  
Jeffrey Harwell ◽  
Changlong Chen ◽  
Bor-Jier Shiau ◽  
Suzanne Jogun ◽  
...  

Author(s):  
Robyn N. Conmy ◽  
Devi Sundaravadivelu ◽  
Blake A. Schaeffer ◽  
Brian Robinson ◽  
Tom King ◽  
...  

ABSTRACT Chemical dispersant formulations typically provide maximum oil dispersion in waters between 30–40 ppt (parts per thousand) salt content, which encompasses typical ocean salinity (~34 ppt). As a result, most laboratory studies of oil dispersion effectiveness (DE) are conducted at low to average ocean salinity. Ocean salinity can vary locally from below 20 ppt during ice and snow melt, to extremely high (over 100 ppt) during freeze up periods or within natural brine pools in deeper waters. In this study, the influence of salinity on DE was evaluated using the baffled flask test (BFT) at a dispersant-to-oil ratio (DOR) of 1:25. Benchtop experiments were conducted with Alaskan North Slope (ANS) crude oil in the presence or absence of chemical dispersant at 5 and 25°C and varying salinities (0.2 to 125 ppt). In addition to DE as determined by BFT, oil droplet size distribution (DSD) and fluorescence intensity was measured via a LISST-100X particle size analyzer (Sequoia Scientific, Inc., Bellevue, WA) and ECO fluorometer (Sea Bird - WET Labs, Inc.; Philomath, OR), respectively. Results indicate that in the presence of dispersant, maximum DE occurred at 25ppt, and decreases above and below this salinity. Concentration of small droplets (<10 μm) was twice as high at 35ppt than at the other salinities in the presence of dispersant at 25°C. Treatments without dispersant did not vary significantly as a function of salinity. Flume tank experiments over a range of salinities support the lab scale results of DSD. These results provide a more comprehensive picture pertaining to the influence of salinity on dispersant usage at high salinities.


Sign in / Sign up

Export Citation Format

Share Document