scholarly journals Embodied Energy and Cost Assessments of a Concentrating Photovoltaic Module

2021 ◽  
Vol 13 (24) ◽  
pp. 13916
Author(s):  
Daria Freier Raine ◽  
Firdaus Muhammad-Sukki ◽  
Roberto Ramirez-Iniguez ◽  
Jorge Alfredo Ardila-Rey ◽  
Tahseen Jafry ◽  
...  

This paper focuses on the embodied energy and cost assessments of a static concentrating photovoltaic (CPV) module in comparison to the flat photovoltaic (PV) module. The CPV module employs a specific concentrator design from the Genetically Optimised Circular Rotational Square Hyperboloid (GOCRSH) concentrators, labelled as GOCRSH_A. Firstly, it discussed previous research on life cycle analyses for PV and CPV modules. Next, it compared the energy embodied in the materials of the GOCRSH_A module to the energy embodied in the materials of a flat PV module of the same electrical output. Lastly, a comparison in terms of cost is presented between the analysed GOCRSH_A module and the flat PV module. It was found that the GOCRSH_A module showed a reduction in embodied energy of 17% which indicates a reduction in embodied carbon. In terms of cost, the costs for the GOCRSH_A module were calculated to be 1.71 times higher than the flat PV module of the same electrical output. It is concluded that a trade-off is required between the embodied energy and cost impacts in order to bring this CPV technology into the market.

Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 163
Author(s):  
Jong Rok Lim ◽  
Woo Gyun Shin ◽  
Chung Geun Lee ◽  
Yong Gyu Lee ◽  
Young Chul Ju ◽  
...  

In recent years, various types of installations such as floating photovoltaic (PV) and agri-voltaic systems, and BIPV (building integrated photovoltaic system) have been implemented in PV systems and, accordingly, there is a growing demand for new PV designs and materials. In particular, in order to install a PV module in a building, it is important to reduce the weight of the module. The PV module in which low-iron, tempered glass is applied to the front surface, which is generally used, has excellent electrical output and reliability characteristics; however, it is heavy. In order to reduce the weight of the PV module, it is necessary to use a film or plastic-based material, as opposed to low-iron, tempered glass, on the front surface. However, if a material other than glass is used on the front of the PV module, various problems such as reduced electrical output and reduced reliability may occur. Therefore, in this paper, a PV module using a film instead of glass as the front surface was fabricated, and a characteristic analysis and reliability test were conducted. First, the transmittance and UV characteristics of each material were tested, and one-cell and 24-cell PV modules were fabricated and tested for electrical output and reliability. From the results, it was found that the transmittance and UV characteristics of the front material were excellent. In addition, the electrical output and reliability test results confirmed that the front-surface film was appropriate for use in a PV module.


2006 ◽  
Vol 128 (3) ◽  
pp. 349-353 ◽  
Author(s):  
A. T. Naveed ◽  
E. C. Kang ◽  
E. J. Lee

The electrical power generated by a polycrystalline silicon photovoltaic (PV) module mounted on an unglazed transpired solar collector (UTC) has been studied and compared to that of a PV module without UTC for a quantitative analysis of electrical output and its role in reducing the simple payback periods of photovoltaic electrical systems. A 75W polycrystalline silicon PV module was fixed on an UTC in front of the ventilation fan, and effectiveness of cooling by means of the forced ventilation at the rate of 160CFM was monitored. The temperature reduction under forced ventilation was in the range of 3-9°C with a 5% recovery in the electrical output power on a typical day of the month of February 2005. The simulated and measured electrical power outputs are in reasonable agreement with root-mean-square error of 2.40. The life cycle assessment of a hypothetical PV system located at Daejeon, South Korea and consisting of 3kW PV modules fixed on a 50m2 UTC shows that with a possible reduction of 3-9°C in the operating temperatures, the system requires three 75W fewer PV modules. The simple payback period of PV system is reduced from 23yearsto15years when integrated into an UTC air heating system.


Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1905 ◽  
Author(s):  
Ming Hu

Knowledge and research tying the environmental impact and embodied energy together is a largely unexplored area in the building industry. The aim of this study is to investigate the practicality of using the ratio between embodied energy and embodied carbon to measure the building’s impact. This study is based on life-cycle assessment and proposes a new measure: life-cycle embodied performance (LCEP), in order to evaluate building performance. In this project, eight buildings located in the same climate zone with similar construction types are studied to test the proposed method. For each case, the embodied energy intensities and embodied carbon coefficients are calculated, and four environmental impact categories are quantified. The following observations can be drawn from the findings: (a) the ozone depletion potential could be used as an indicator to predict the value of LCEP; (b) the use of embodied energy and embodied carbon independently from each other could lead to incomplete assessments; and (c) the exterior wall system is a common significant factor influencing embodied energy and embodied carbon. The results lead to several conclusions: firstly, the proposed LCEP ratio, between embodied energy and embodied carbon, can serve as a genuine indicator of embodied performance. Secondly, environmental impact categories are not dependent on embodied energy, nor embodied carbon. Rather, they are proportional to LCEP. Lastly, among the different building materials studied, metal and concrete express the highest contribution towards embodied energy and embodied carbon.


2018 ◽  
Vol 10 (9) ◽  
pp. 3229 ◽  
Author(s):  
Craig Langston ◽  
Edwin Chan ◽  
Esther Yung

Refurbishing buildings helps reduce waste, and limiting the amount of embodied carbon in buildings helps minimize the damaging impacts of climate change through lower CO2 emissions. The analysis of embodied carbon is based on the concept of life cycle assessment (LCA). LCA is a systematic tool to evaluate the environmental impacts of a product, technology, or service through all stages of its life cycle. This study investigates the embodied carbon footprint of both new-build and refurbished buildings to determine the embodied carbon profile and its relationship to both embodied energy and construction cost. It recognizes that changes in the fuel mix for electricity generation play an important role in embodied carbon impacts in different countries. The empirical findings for Hong Kong suggest that mean embodied carbon for refurbished buildings is 33–39% lower than new-build projects, and the cost for refurbished buildings is 22–50% lower than new-build projects (per square meter of floor area). Embodied carbon ranges from 645–1059 kgCO2e/m2 for new-build and 294–655 kgCO2e/m2 for refurbished projects, which is in keeping with other studies outside Hong Kong. However, values of embodied carbon and cost for refurbished projects in this study have a higher coefficient of variation than their new-build counterparts. It is argued that it is preferable to estimate embodied energy and then convert to embodied carbon (rather than estimate embodied carbon directly), as carbon is both time and location specific. A very strong linear relationship is also observed between embodied energy and construction cost that can be used to predict the former, given the latter. This study provides a framework whereby comparisons can be made between new-build and refurbished projects on the basis of embodied carbon and related construction cost differentials into the future, helping to make informed decisions about which strategy to pursue.


2018 ◽  
Vol 49 ◽  
pp. 00126 ◽  
Author(s):  
Arkadiusz Węglarz ◽  
Michał Pierzchalski

This article concerns the Life Cycle Assessment method of evaluation and the ways in which it can be applied as a tool facilitating the design of buildings to reduce embodied energy and embodied carbon. Three variants of a building were examined with the same functional ground plan and usable floor area of 142.6 m2. Each variant of the building was designed using different construction technologies: bricklaying technology utilizing autoclaved aerated concrete popular in Poland, wooden frame insulated with mineral wool, and the Straw-bale technology. Using digital models (Building Information Model) the building’s energy characteristics was simulated and the embodied energy and embodied carbon of the production stage (also called cradle-to-gate) were calculated. The performed calculations were used to compare the cumulative energy and embodied carbon of each variant for a 40 year long life cycle.


2020 ◽  
Vol 12 (11) ◽  
pp. 4750
Author(s):  
Przemyslaw Zawadzki ◽  
Firdaus Muhammad-Sukki ◽  
Siti Hawa Abu-Bakar ◽  
Nurul Aini Bani ◽  
Abdullahi Abubakar Mas’ud ◽  
...  

Integrating a concentrator into the building integrated photovoltaic (BIPV) design has resulted in a new technology known as the building integrated concentrating photovoltaic (BICPV). The rotationally asymmetrical compound parabolic concentrator (RACPC) is an example of a concentrator design that has been explored for use in BICPV. This paper evaluates the life cycle assessment (LCA) for the RACPC-PV module, which has never been explored before. The LCA of the RACPC-PV module has found a cost reduction of 29.09% and a reduction of 11.76% of embodied energy material manufacture when compared to a conventional solar photovoltaic (PV) module. The energy payback time for an RACPC-PV and a conventional PV was calculated to be 8.01 and 6.63 years, respectively. Moreover, the energy return on investment ratio was calculated to be 3.12 for a conventional PV and 3.77 for an RACPC-PV.


2018 ◽  
Vol 12 (2) ◽  
pp. 98 ◽  
Author(s):  
Jalaluddin . ◽  
Baharuddin Mire

Actual performance of photovoltaic module with solar tracking is presented. Solar radiation can be converted into electrical energy using photovoltaic (PV) modules. Performance of polycristalline silicon PV modules with and without solar tracking are investigated experimentally. The PV module with dimension 698 x 518 x 25 mm has maximum power and voltage is 45 Watt and 18 Volt respectively. Based on the experiment data, it is concluded that the performance of PV module with solar tracking increases in the morning and afternoon compared with that of fixed PV module. It increases about 18 % in the morning from 10:00 to 12:00 and in the afternoon from 13:30 to 14:00 (local time). This study also shows the daily performance characteristic of the two PV modules. Using PV module with solar tracking provides a better performance than fixed PV module. 


Buildings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 230
Author(s):  
Hossein Omrany ◽  
Veronica Soebarto ◽  
Jian Zuo ◽  
Ruidong Chang

This paper aims to propose a comprehensive framework for a clear description of system boundary conditions in life cycle energy assessment (LCEA) analysis in order to promote the incorporation of embodied energy impacts into building energy-efficiency regulations (BEERs). The proposed framework was developed based on an extensive review of 66 studies representing 243 case studies in over 15 countries. The framework consists of six distinctive dimensions, i.e., temporal, physical, methodological, hypothetical, spatial, and functional. These dimensions encapsulate 15 components collectively. The proposed framework possesses two key characteristics; first, its application facilitates defining the conditions of a system boundary within a transparent context. This consequently leads to increasing reliability of obtained LCEA results for decision-making purposes since any particular conditions (e.g., truncation or assumption) considered in establishing the boundaries of a system under study can be revealed. Second, the use of a framework can also provide a meaningful basis for cross comparing cases within a global context. This characteristic can further result in identifying best practices for the design of buildings with low life cycle energy use performance. Furthermore, this paper applies the proposed framework to analyse the LCEA performance of a case study in Adelaide, Australia. Thereafter, the framework is utilised to cross compare the achieved LCEA results with a case study retrieved from literature in order to demonstrate the framework’s capacity for cross comparison. The results indicate the capability of the framework for maintaining transparency in establishing a system boundary in an LCEA analysis, as well as a standardised basis for cross comparing cases. This study also offers recommendations for policy makers in the building sector to incorporate embodied energy into BEERs.


Author(s):  
Yuma Sasaki ◽  
Takahiro Orikasa ◽  
Nobutaka Nakamura ◽  
Kiyotada Hayashi ◽  
Yoshihito Yasaka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document