scholarly journals Lower Approximation Reduction Based on Discernibility Information Tree in Inconsistent Ordered Decision Information Systems

Symmetry ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 696 ◽  
Author(s):  
Jia Zhang ◽  
Xiaoyan Zhang ◽  
Weihua Xu

Attribute reduction is an important topic in the research of rough set theory, and it has been widely used in many aspects. Reduction based on an identifiable matrix is a common method, but a lot of space is occupied by repetitive and redundant identifiable attribute sets. Therefore, a new method for attribute reduction is proposed, which compresses and stores the identifiable attribute set by a discernibility information tree. In this paper, the discernibility information tree based on a lower approximation identifiable matrix is constructed in an inconsistent decision information system under dominance relations. Then, combining the lower approximation function with the discernibility information tree, a complete algorithm of lower approximation reduction based on the discernibility information tree is established. Finally, the rationality and correctness of this method are verified by an example.

2012 ◽  
Vol 3 (2) ◽  
pp. 38-52 ◽  
Author(s):  
Tutut Herawan

This paper presents an alternative way for constructing a topological space in an information system. Rough set theory for reasoning about data in information systems is used to construct the topology. Using the concept of an indiscernibility relation in rough set theory, it is shown that the topology constructed is a quasi-discrete topology. Furthermore, the dependency of attributes is applied for defining finer topology and further characterizing the roughness property of a set. Meanwhile, the notions of base and sub-base of the topology are applied to find attributes reduction and degree of rough membership, respectively.


Author(s):  
JIYE LIANG ◽  
ZONGBEN XU

Rough set theory is emerging as a powerful tool for reasoning about data, knowledge reduction is one of the important topics in the research on rough set theory. It has been proven that finding the minimal reduct of an information system is a NP-hard problem, so is finding the minimal reduct of an incomplete information system. Main reason of causing NP-hard is combination problem of attributes. In this paper, knowledge reduction is defined from the view of information, a heuristic algorithm based on rough entropy for knowledge reduction is proposed in incomplete information systems, the time complexity of this algorithm is O(|A|2|U|). An illustrative example is provided that shows the application potential of the algorithm.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Minlun Yan

Attribute reduction is one of the most important problems in rough set theory. However, from the granular computing point of view, the classical rough set theory is based on a single granulation. It is necessary to study the issue of attribute reduction based on multigranulations rough set. To acquire brief decision rules from information systems, this paper firstly investigates attribute reductions by combining the multigranulations rough set together with evidence theory. Concepts of belief and plausibility consistent set are proposed, and some important properties are addressed by the view of the optimistic and pessimistic multigranulations rough set. What is more, the multigranulations method of the belief and plausibility reductions is constructed in the paper. It is proved that a set is an optimistic (pessimistic) belief reduction if and only if it is an optimistic (pessimistic) lower approximation reduction, and a set is an optimistic (pessimistic) plausibility reduction if and only if it is an optimistic (pessimistic) upper approximation reduction.


1988 ◽  
Vol 11 (3) ◽  
pp. 219-239
Author(s):  
Anita Wasilewska

The concept of an information system, with manipulation based on the rough set theory, was introduced by Pawlak in 1982. The information system is defined by its set of objects, set of attributes, set of values of attributes, and a function, which maps the direct product of the first two sets onto the set of values of attributes. We introduce here, after [Pawlak 1985(1)], concepts of the decision rule, decision algorithm, static learning and describe the automatic procedures of deciding whether a given decision rule or decision algorithm is correct.


Author(s):  
Yanfang Liu ◽  
Hong Zhao ◽  
William Zhu

Rough set is mainly concerned with the approximations of objects through an equivalence relation on a universe. Matroid is a generalization of linear algebra and graph theory. Recently, a matroidal structure of rough sets is established and applied to the problem of attribute reduction which is an important application of rough set theory. In this paper, we propose a new matroidal structure of rough sets and call it a parametric matroid. On the one hand, for an equivalence relation on a universe, a parametric set family, with any subset of the universe as its parameter, is defined through the lower approximation operator. This parametric set family is proved to satisfy the independent set axiom of matroids, therefore a matroid is generated, and we call it a parametric matroid of the rough set. Through the lower approximation operator, three equivalent representations of the parametric set family are obtained. Moreover, the parametric matroid of the rough set is proved to be the direct sum of a partition-circuit matroid and a free matroid. On the other hand, partition-circuit matroids are well studied through the lower approximation number, and then we use it to investigate the parametric matroid of the rough set. Several characteristics of the parametric matroid of the rough set, such as independent sets, bases, circuits, the rank function and the closure operator, are expressed by the lower approximation number.


Sign in / Sign up

Export Citation Format

Share Document