scholarly journals Explicit Integrator of Runge-Kutta Type for Direct Solution of u(4)=f(x,u,u′,u′′)

Symmetry ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 246 ◽  
Author(s):  
Nizam Ghawadri ◽  
Norazak Senu ◽  
Firas Fawzi ◽  
Fudziah Ismail ◽  
Zarina Ibrahim

The primary contribution of this work is to develop direct processes of explicit Runge-Kutta type (RKT) as solutions for any fourth-order ordinary differential equation (ODEs) of the structure u ( 4 ) = f ( x , u , u ′ , u ′ ′ ) and denoted as RKTF method. We presented the associated B-series and quad-colored tree theory with the aim of deriving the prerequisites of the said order. Depending on the order conditions, the method with algebraic order four with a three-stage and order five with a four-stage denoted as RKTF4 and RKTF5 are discussed, respectively. Numerical outcomes are offered to interpret the accuracy and efficacy of the new techniques via comparisons with various currently available RK techniques after converting the problems into a system of first-order ODE systems. Application of the new methods in real-life problems in ship dynamics is discussed.

2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
N. A. Ahmad ◽  
N. Senu ◽  
F. Ismail

A phase-fitted and amplification-fitted two-derivative Runge-Kutta (PFAFTDRK) method of high algebraic order for the numerical solution of first-order Initial Value Problems (IVPs) which possesses oscillatory solutions is derived. We present a sixth-order four-stage two-derivative Runge-Kutta (TDRK) method designed using the phase-fitted and amplification-fitted property. The stability of the new method is analyzed. The numerical experiments are carried out to show the efficiency of the derived methods in comparison with other existing Runge-Kutta (RK) methods.


Symmetry ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 924 ◽  
Author(s):  
Khai Chien Lee ◽  
Norazak Senu ◽  
Ali Ahmadian ◽  
Siti Nur Iqmal Ibrahim

A class of explicit Runge–Kutta type methods with the involvement of fourth derivative, denoted as two-derivative Runge–Kutta type (TDRKT) methods, are proposed and investigated for solving a special class of third-order ordinary differential equations in the form u ‴ ( x ) = f ( x , u ( x ) ) . In this paper, two stages with algebraic order four and three stages with algebraic order five are presented. The derivation of TDRKT methods involves single third derivative and multiple evaluations of fourth derivative for every step. Stability property of the methods are analysed. Accuracy and efficiency of the new methods are exhibited through numerical experiments.


2013 ◽  
Vol 24 (10) ◽  
pp. 1350073 ◽  
Author(s):  
YONGLEI FANG ◽  
XIONG YOU ◽  
QINGHE MING

Two exponentially fitted two-derivative Runge–Kutta (EFTDRK) methods of algebraic order four are derived. The asymptotic expressions of the local errors for large energies are obtained. The numerical results in the integration of the radial Schrödinger equation with the Woods–Saxon potential show the high efficiency of our new methods compared to some famous optimized codes in the literature.


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1242
Author(s):  
Ramandeep Behl ◽  
Sonia Bhalla ◽  
Eulalia Martínez ◽  
Majed Aali Alsulami

There is no doubt that the fourth-order King’s family is one of the important ones among its counterparts. However, it has two major problems: the first one is the calculation of the first-order derivative; secondly, it has a linear order of convergence in the case of multiple roots. In order to improve these complications, we suggested a new King’s family of iterative methods. The main features of our scheme are the optimal convergence order, being free from derivatives, and working for multiple roots (m≥2). In addition, we proposed a main theorem that illustrated the fourth order of convergence. It also satisfied the optimal Kung–Traub conjecture of iterative methods without memory. We compared our scheme with the latest iterative methods of the same order of convergence on several real-life problems. In accordance with the computational results, we concluded that our method showed superior behavior compared to the existing methods.


2004 ◽  
Vol 15 (01) ◽  
pp. 1-15 ◽  
Author(s):  
Z. A. ANASTASSI ◽  
T. E. SIMOS

In this paper we present a family of explicit Runge–Kutta methods of 5th algebraic order, one of which has variable coefficients, for the efficient solution of problems with oscillating solutions. Emphasis is placed on the phase-lag property in order to show its importance with regards to problems with oscillating solutions. Basic theory of Runge–Kutta methods, phase-lag analysis and construction of the new methods are described. Numerical results obtained for known problems show the efficiency of the new methods when they are compared with known methods in the literature. Furthermore we note that the method with variable coefficients appears to have much higher accuracy, which gets close to double precision, when the product of the frequency with the step-length approaches certain values. These values are constant and independent of the problem solved and depend only on the method used and more specifically on the expressions used to achieve higher algebraic order.


2019 ◽  
Vol 17 (05) ◽  
pp. 1940017
Author(s):  
Ali Saleh Alshomrani ◽  
Ioannis K. Argyros ◽  
Ramandeep Behl

Our principle aim in this paper is to present a new reconstruction of classical Chebyshev–Halley schemes having optimal fourth and eighth-order of convergence for all parameters [Formula: see text] unlike in the earlier studies. In addition, we analyze the local convergence of them by using hypotheses requiring the first-order derivative of the involved function [Formula: see text] and the Lipschitz conditions. In addition, we also formulate their theoretical radius of convergence. Several numerical examples originated from real life problems demonstrate that they are applicable to a broad range of scalar equations, where previous studies cannot be used. Finally, a dynamical study of them also demonstrates that bigger and more promising basins of attractions are obtained.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Kasim Hussain ◽  
Fudziah Ismail ◽  
Norazak Senu

A Runge-Kutta type method for directly solving special fourth-order ordinary differential equations (ODEs) which is denoted by RKFD method is constructed. The order conditions of RKFD method up to order five are derived; based on the order conditions, three-stage fourth- and fifth-order Runge-Kutta type methods are constructed. Zero-stability of the RKFD method is proven. Numerical results obtained are compared with the existing Runge-Kutta methods in the scientific literature after reducing the problems into a system of first-order ODEs and solving them. Numerical results are presented to illustrate the robustness and competency of the new methods in terms of accuracy and number of function evaluations.


2010 ◽  
Vol 25 (3) ◽  
pp. 249-279 ◽  
Author(s):  
Roman Barták ◽  
Miguel A. Salido ◽  
Francesca Rossi

AbstractDuring recent years, the development of new techniques for constraint satisfaction, planning, and scheduling has received increased attention, and substantial effort has been invested in trying to exploit such techniques to find solutions to real-life problems. In this paper, we present a survey on constraint satisfaction, planning, and scheduling from the Artificial Intelligence point of view. In particular, we present the main definitions and techniques, and discuss possible ways of integrating such techniques. We also analyze the role of constraint satisfaction in planning and scheduling, and hint at some open research issues related to planning, scheduling, and constraint satisfaction.


2021 ◽  
Vol 34 (4) ◽  
pp. 58-67
Author(s):  
Zainab Khaled Ghazal ◽  
Kasim Abbas Hussain

     This paper develop conventional Runge-Kutta methods of order four and order five to solve ordinary differential equations with oscillating solutions. The new modified Runge-Kutta methods (MRK) contain the invalidation of phase lag, phase lag’s derivatives, and amplification error. Numerical tests from their outcomes show the robustness and competence of the new methods compared to the well-known Runge-Kutta methods in the scientific literature.


Sign in / Sign up

Export Citation Format

Share Document