scholarly journals Separability of the Planar 1/ρ2 Potential in Multiple Coordinate Systems

Symmetry ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1312
Author(s):  
Richard DeCosta ◽  
Brett Altschul

With a number of special Hamiltonians, solutions of the Schrödinger equation may be found by separation of variables in more than one coordinate system. The class of potentials involved includes a number of important examples, including the isotropic harmonic oscillator and the Coulomb potential. Multiply separable Hamiltonians exhibit a number of interesting features, including “accidental” degeneracies in their bound state spectra and often classical bound state orbits that always close. We examine another potential, for which the Schrödinger equation is separable in both cylindrical and parabolic coordinates: A z-independent V∝1/ρ2=1/(x2+y2) in three dimensions. All the persistent, bound classical orbits in this potential close, because all other orbits with negative energies fall to the center at ρ=0. When separated in parabolic coordinates, the Schrödinger equation splits into three individual equations, two of which are equivalent to the radial equation in a Coulomb potential—one equation with an attractive potential, the other with an equally strong repulsive potential.

2013 ◽  
Vol 22 (06) ◽  
pp. 1350036 ◽  
Author(s):  
SHISHAN DONG ◽  
GUO-HUA SUN ◽  
SHI-HAI DONG

Using improved approximate schemes for centrifugal term and the singular factor 1/r appearing in potential itself, we solve the Schrödinger equation with the screen Coulomb potential for arbitrary angular momentum state l. The bound state energy levels are obtained. A closed form of normalization constant of the wave functions is also found. The numerical results show that our results are in good agreement with those obtained by other methods. The key issue is how to treat two singular points in this quantum system.


2021 ◽  
Vol 3 (2) ◽  
pp. 48-55
Author(s):  
E. P. Inyang ◽  
E. P. Inyang ◽  
J. Karniliyus ◽  
J. E. Ntibi ◽  
E. S. William

In this work, we obtain solutions of the Schrödinger equation with Kratzer-screened Coulomb potential (KSCP) model using the series expansion method. Explicitly, we compute the bound state energy eigenvalues for selected diatomic molecules of N2, CO, NO, and CH, respectively, for the various vibrational and rotational quantum states and the numerical energy eigenvalues agree with the existing literature. Three special cases were considered. The energy eigenvalues are applied to obtain the mass spectra of heavy quarkonium system such as charmonium and bottomonium. The results agree with the experimental data and other recent theoretical studies.


2016 ◽  
Vol 94 (5) ◽  
pp. 517-521 ◽  
Author(s):  
Akpan N. Ikot ◽  
Tamunoimi M. Abbey ◽  
Ephraim O. Chukwuocha ◽  
Michael C. Onyeaju

In this paper, we obtain the bound state energy eigenvalues and the corresponding eigenfunctions of the Schrödinger equation for the pseudo-Coulomb potential plus a new improved ring-shaped potential within the framework of cosmic string space–time using the generalized parametric Nikiforov–Uvarov method. Our results are in good agreement with other works in the cosmic string space–time and reduced to those in the Minkowski space–time when α = 1.


2021 ◽  
Vol 3 (2) ◽  
pp. 34-43
Author(s):  
P. O. Ushie ◽  
C. M. Ekpo ◽  
T. O. Magu ◽  
P. O. Okoi

Within the framework of Nikiforov-Uvarov method, we obtained an approximate solution of the Schrodinger equation for the Energy Dependent Generalized inverse quadratic Yukawa potential model. The bound state energy eigenvalues for were computed for various vibrational and rotational quantum numbers. Special cases were considered when the potential parameters were altered, resulting into Energy Dependent Kratzer and Kratzer potential, Energy Dependent Kratzer fues and Kratzer fues potential, Energy Dependent Inverse quadratic Yukawa and Inverse quadratic Yukawa Potential, Energy Dependent Yukawa (screened Coulomb) and Yukawa (screened Coulomb) potential, and Energy Dependent Coulomb and Coulomb potential, respectively. Their energy eigenvalues expressions and numerical computations agreed with the already existing literatures.


2018 ◽  
Vol 35 (3) ◽  
pp. 103
Author(s):  
Benedict Iserom Ita ◽  
P. Ekuri ◽  
Idongesit O. Isaac ◽  
Abosede O. James

The arbitrary angular momentum solutions of the Schrödinger equation for a diatomic molecule with the general exponential screened coulomb potential of the form V(r) = (− a / r){1+ (1+ br )e−2br } has been presented. The energy eigenvalues and the corresponding eigenfunctions are calculated analytically by the use of Nikiforov-Uvarov (NU) method which is related to the solutions in terms of Jacobi polynomials. The bounded state eigenvalues are calculated numerically for the 1s state of N2 CO and NO


2004 ◽  
Vol 59 (11) ◽  
pp. 875-876 ◽  
Author(s):  
Gang Chen

The second-order N-dimensional Schrödinger differential equation with the Coulomb potential is reduced to a firstorder differential equation by means of the Laplace transform and the exact bound state solutions are obtained. It is shown that this method solving the Schrödinger equation may serve as a substitute for the factorization approach also in lower dimensions. - PACS numbers: 03.65.Ge.


Sign in / Sign up

Export Citation Format

Share Document