scholarly journals Diatomic Molecules and Mass Spectrum of Heavy Quarkonium System with Kratzer- Screened Coulomb Potential (KSCP) through the Solutions of the Schrödinger Equation

2021 ◽  
Vol 3 (2) ◽  
pp. 48-55
Author(s):  
E. P. Inyang ◽  
E. P. Inyang ◽  
J. Karniliyus ◽  
J. E. Ntibi ◽  
E. S. William

In this work, we obtain solutions of the Schrödinger equation with Kratzer-screened Coulomb potential (KSCP) model using the series expansion method. Explicitly, we compute the bound state energy eigenvalues for selected diatomic molecules of N2, CO, NO, and CH, respectively, for the various vibrational and rotational quantum states and the numerical energy eigenvalues agree with the existing literature. Three special cases were considered. The energy eigenvalues are applied to obtain the mass spectra of heavy quarkonium system such as charmonium and bottomonium. The results agree with the experimental data and other recent theoretical studies.

2021 ◽  
Vol 3 (2) ◽  
pp. 34-43
Author(s):  
P. O. Ushie ◽  
C. M. Ekpo ◽  
T. O. Magu ◽  
P. O. Okoi

Within the framework of Nikiforov-Uvarov method, we obtained an approximate solution of the Schrodinger equation for the Energy Dependent Generalized inverse quadratic Yukawa potential model. The bound state energy eigenvalues for were computed for various vibrational and rotational quantum numbers. Special cases were considered when the potential parameters were altered, resulting into Energy Dependent Kratzer and Kratzer potential, Energy Dependent Kratzer fues and Kratzer fues potential, Energy Dependent Inverse quadratic Yukawa and Inverse quadratic Yukawa Potential, Energy Dependent Yukawa (screened Coulomb) and Yukawa (screened Coulomb) potential, and Energy Dependent Coulomb and Coulomb potential, respectively. Their energy eigenvalues expressions and numerical computations agreed with the already existing literatures.


2018 ◽  
Vol 35 (3) ◽  
pp. 103
Author(s):  
Benedict Iserom Ita ◽  
P. Ekuri ◽  
Idongesit O. Isaac ◽  
Abosede O. James

The arbitrary angular momentum solutions of the Schrödinger equation for a diatomic molecule with the general exponential screened coulomb potential of the form V(r) = (− a / r){1+ (1+ br )e−2br } has been presented. The energy eigenvalues and the corresponding eigenfunctions are calculated analytically by the use of Nikiforov-Uvarov (NU) method which is related to the solutions in terms of Jacobi polynomials. The bounded state eigenvalues are calculated numerically for the 1s state of N2 CO and NO


2021 ◽  
pp. 2150041
Author(s):  
U. S. Okorie ◽  
A. N. Ikot ◽  
G. J. Rampho ◽  
P. O. Amadi ◽  
Hewa Y. Abdullah

By employing the concept of conformable fractional Nikiforov–Uvarov (NU) method, we solved the fractional Schrödinger equation with the Morse potential in one dimension. The analytical expressions of the bound state energy eigenvalues and eigenfunctions for the Morse potential were obtained. Numerical results for the energies of Morse potential for the selected diatomic molecules were computed for different fractional parameters chosen arbitrarily. Also, the graphical variation of the bound state energy eigenvalues of the Morse potential for hydrogen dimer with vibrational quantum number and the range of the potential were discussed, with regards to the selected fractional parameters. The vibrational partition function and other thermodynamic properties such as vibrational internal energy, vibrational free energy, vibrational entropy and vibrational specific heat capacity were evaluated in terms of temperature. Our results are new and have not been reported in any literature before.


2020 ◽  
Vol 66 (6 Nov-Dec) ◽  
pp. 824
Author(s):  
C. O. Edet ◽  
P. O. Amadi ◽  
U. S. Okorie ◽  
A. Tas ◽  
A. N. Ikot ◽  
...  

Analytical solutions of the Schrödinger equation for the generalized trigonometric Pöschl–Teller potential by using an appropriate approximation to the centrifugal term within the framework of the Functional Analysis Approach have been considered. Using the energy equation obtained, the partition function was calculated and other relevant thermodynamic properties. More so, we use the concept of the superstatistics to also evaluate the thermodynamics properties of the system. It is noted that the well-known normal statistics results are recovered in the absence of the deformation parameter and this is displayed graphically for the clarity of our results. We also obtain analytic forms for the energy eigenvalues and the bound state eigenfunction solutions are obtained in terms of the hypergeometric functions. The numerical energy spectra for different values of the principal and orbital quantum numbers are obtained. To show the accuracy of our results, we discuss some special cases by adjusting some potential parameters and also compute the numerical eigenvalue of the trigonometric Pöschl–Teller potential for comparison sake. However, it was found out that our results agree excellently with the results obtained via other methods


2019 ◽  
Vol 65 (4 Jul-Aug) ◽  
pp. 333 ◽  
Author(s):  
C. O. Edet ◽  
And P. O. Okoi

The bound state approximate solution of the Schrodinger equation is obtained for the q-deformed Hulthen plus generalized inverse quadratic Yukawa potential (HPGIQYP) in -dimensions using the Nikiforov-Uvarov (NU) method and the corresponding eigenfunctions are expressed in Jacobi polynomials. Seven special cases of the potential are discussed and the numerical energy eigenvalues are calculated for two values of the deformation parameter in different dimensions.


2020 ◽  
Vol 45 (4) ◽  
pp. 40-56
Author(s):  
Uduakobong Sunday Okorie ◽  
Akpan Ndem Ikot ◽  
Precious Ogbonda Amadi ◽  
Alalibo Thompson Ngiangia ◽  
Etebong Emmanuel Ibekwe

Within the framework of the conventional Nikiforov-Uvarov method and a new form of Greene-Aldrich approximation scheme, we solved the Schrödinger equation with the energy-dependent screened Coulomb potential. Energy eigenvalues and energy eigenfunctions were obtained both approximately and numerically at different dimensions. The energy variations with different potential parameters, quantum numbers and energy slope parameter, respectively were also discussed graphically. The major finding of this research is the effect of the energy slope parameter on the energy spectra, which is seen in the existence of two simultaneous energy values for a particular quantum state. Our special cases also agree with the results obtained from literature, when the energy slope parameter is zero.


2020 ◽  
Vol 66 (6 Nov-Dec) ◽  
pp. 730 ◽  
Author(s):  
E. S. William ◽  
E. P. Inyang ◽  
E. A. Thompson

In this study, we obtained bound state solutions of the radial Schrödinger equation by the superposition of Hulthén plus Hellmann potential within the framework of Nikiforov-Uvarov (NU) method for an arbitrary  - states. The corresponding normalized wave functions expressed in terms of Jacobi polynomial for a particle exposed to this potential field was also obtained. The numerical energy eigenvalues for different quantum state have been computed. Six special cases are also considered and their energy eigenvalues are obtained. Our results are found to be in good agreement with the results in literature. The behavior of energy in the ground and excited state for different quantum state are studied graphically.


Sign in / Sign up

Export Citation Format

Share Document