scholarly journals Solutions of the Schrödinger equation for pseudo-Coulomb potential plus a new improved ring-shaped potential in the cosmic string space–time

2016 ◽  
Vol 94 (5) ◽  
pp. 517-521 ◽  
Author(s):  
Akpan N. Ikot ◽  
Tamunoimi M. Abbey ◽  
Ephraim O. Chukwuocha ◽  
Michael C. Onyeaju

In this paper, we obtain the bound state energy eigenvalues and the corresponding eigenfunctions of the Schrödinger equation for the pseudo-Coulomb potential plus a new improved ring-shaped potential within the framework of cosmic string space–time using the generalized parametric Nikiforov–Uvarov method. Our results are in good agreement with other works in the cosmic string space–time and reduced to those in the Minkowski space–time when α = 1.

2013 ◽  
Vol 22 (06) ◽  
pp. 1350036 ◽  
Author(s):  
SHISHAN DONG ◽  
GUO-HUA SUN ◽  
SHI-HAI DONG

Using improved approximate schemes for centrifugal term and the singular factor 1/r appearing in potential itself, we solve the Schrödinger equation with the screen Coulomb potential for arbitrary angular momentum state l. The bound state energy levels are obtained. A closed form of normalization constant of the wave functions is also found. The numerical results show that our results are in good agreement with those obtained by other methods. The key issue is how to treat two singular points in this quantum system.


2009 ◽  
Vol 18 (03) ◽  
pp. 631-641 ◽  
Author(s):  
V. H. BADALOV ◽  
H. I. AHMADOV ◽  
A. I. AHMADOV

In this work, the analytical solution of the radial Schrödinger equation for the Woods–Saxon potential is presented. In our calculations, we have applied the Nikiforov–Uvarov method by using the Pekeris approximation to the centrifugal potential for arbitrary l states. The bound state energy eigenvalues and corresponding eigenfunctions are obtained for various values of n and l quantum numbers.


2016 ◽  
Vol 94 (1) ◽  
pp. 71-74 ◽  
Author(s):  
A. Afshardoost ◽  
H. Hassanabadi

We investigate the behavior of quantum particles in the cosmic string space–time in the presence of Pöschl–Teller double-ring-shaped Coulomb and double-ring-shaped oscillator potentials. We obtain energy levels and finally compare the results with the Minkowski space–time. To do this, we solve the Schrödinger equation in spherical coordinates.


2008 ◽  
Vol 17 (07) ◽  
pp. 1327-1334 ◽  
Author(s):  
RAMAZÀN SEVER ◽  
CEVDET TEZCAN

Exact solutions of Schrödinger equation are obtained for the modified Kratzer and the corrected Morse potentials with the position-dependent effective mass. The bound state energy eigenvalues and the corresponding eigenfunctions are calculated for any angular momentum for target potentials. Various forms of point canonical transformations are applied.


2021 ◽  
pp. 2150041
Author(s):  
U. S. Okorie ◽  
A. N. Ikot ◽  
G. J. Rampho ◽  
P. O. Amadi ◽  
Hewa Y. Abdullah

By employing the concept of conformable fractional Nikiforov–Uvarov (NU) method, we solved the fractional Schrödinger equation with the Morse potential in one dimension. The analytical expressions of the bound state energy eigenvalues and eigenfunctions for the Morse potential were obtained. Numerical results for the energies of Morse potential for the selected diatomic molecules were computed for different fractional parameters chosen arbitrarily. Also, the graphical variation of the bound state energy eigenvalues of the Morse potential for hydrogen dimer with vibrational quantum number and the range of the potential were discussed, with regards to the selected fractional parameters. The vibrational partition function and other thermodynamic properties such as vibrational internal energy, vibrational free energy, vibrational entropy and vibrational specific heat capacity were evaluated in terms of temperature. Our results are new and have not been reported in any literature before.


2021 ◽  
Vol 3 (3) ◽  
pp. 38-41
Author(s):  
E. B. Ettah ◽  
P. O. Ushie ◽  
C. M. Ekpo

In this paper, we solve analytically the Schrodinger equation for s-wave and arbitrary angular momenta with the Hua potential is investigated respectively. The wave function as well as energy equation are obtained in an exact analytical manner via the Nikiforov Uvarov method using two approximations scheme. Some special cases of this potentials are also studied.


2021 ◽  
Vol 3 (2) ◽  
pp. 48-55
Author(s):  
E. P. Inyang ◽  
E. P. Inyang ◽  
J. Karniliyus ◽  
J. E. Ntibi ◽  
E. S. William

In this work, we obtain solutions of the Schrödinger equation with Kratzer-screened Coulomb potential (KSCP) model using the series expansion method. Explicitly, we compute the bound state energy eigenvalues for selected diatomic molecules of N2, CO, NO, and CH, respectively, for the various vibrational and rotational quantum states and the numerical energy eigenvalues agree with the existing literature. Three special cases were considered. The energy eigenvalues are applied to obtain the mass spectra of heavy quarkonium system such as charmonium and bottomonium. The results agree with the experimental data and other recent theoretical studies.


Sign in / Sign up

Export Citation Format

Share Document