scholarly journals A Numerical Approach of a Time Fractional Reaction–Diffusion Model with a Non-Singular Kernel

Symmetry ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1653
Author(s):  
Tayyaba Akram ◽  
Muhammad Abbas ◽  
Ajmal Ali ◽  
Azhar Iqbal ◽  
Dumitru Baleanu

The time–fractional reaction–diffusion (TFRD) model has broad physical perspectives and theoretical interpretation, and its numerical techniques are of significant conceptual and applied importance. A numerical technique is constructed for the solution of the TFRD model with the non-singular kernel. The Caputo–Fabrizio operator is applied for the discretization of time levels while the extended cubic B-spline (ECBS) function is applied for the space direction. The ECBS function preserves geometrical invariability, convex hull and symmetry property. Unconditional stability and convergence analysis are also proved. The projected numerical method is tested on two numerical examples. The theoretical and numerical results demonstrate that the order of convergence of 2 in time and space directions.

Author(s):  
Mohammad Ramezani

AbstractThe main propose of this paper is presenting an efficient numerical scheme to solve WSGD scheme for one- and two-dimensional distributed order fractional reaction–diffusion equation. The proposed method is based on fractional B-spline basics in collocation method which involve Caputo-type fractional derivatives for $$0 < \alpha < 1$$ 0 < α < 1 . The most significant privilege of proposed method is efficient and quite accurate and it requires relatively less computational work. The solution of consideration problem is transmute to the solution of the linear system of algebraic equations which can be solved by a suitable numerical method. The finally, several numerical WSGD Scheme for one- and two-dimensional distributed order fractional reaction–diffusion equation.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Xiaozhong Yang ◽  
Xu Dang

Abstract The fractional reaction–diffusion equation has profound physical and engineering background, and its rapid solution research is of important scientific significance and engineering application value. In this paper, we propose a parallel computing method of mixed difference scheme for time fractional reaction–diffusion equation and construct a class of improved alternating segment Crank–Nicolson (IASC–N) difference schemes. The class of parallel difference schemes constructed in this paper, based on the classical Crank–Nicolson (C–N) scheme and classical explicit and implicit schemes, combines with alternating segment techniques. We illustrate the unique existence, unconditional stability, and convergence of the parallel difference scheme solution theoretically. Numerical experiments verify the theoretical analysis, which shows that the IASC–N scheme has second order spatial accuracy and $2-\alpha $ 2 − α order temporal accuracy, and the computational efficiency is greatly improved compared with the implicit scheme and C–N scheme. The IASC–N scheme has ideal computation accuracy and obvious parallel computing properties, showing that the IASC–N parallel difference method is effective for solving time fractional reaction–diffusion equation.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Moussa Bachraoui ◽  
Khalid Hattaf ◽  
Noura Yousfi

In this paper, we propose a fractional reaction-diffusion model in order to better understand the mechanisms and dynamics of hepatitis B virus (HBV) infection in human body. The infection transmission is modeled by Hattaf–Yousfi functional response, and the fractional derivative is in the sense of Caputo. The global stability of the model equilibria is analyzed by means of Lyapunov functionals. Finally, numerical simulations are presented to support our analytical results.


2020 ◽  
Vol 25 (2) ◽  
pp. 36
Author(s):  
Tilmann Glimm ◽  
Jianying Zhang

We propose a numerical approach that combines a radial basis function (RBF) meshless approximation with a finite difference discretization to solve a nonlinear system of integro-differential equations. The equations are of advection-reaction-diffusion type modeling the formation of pre-cartilage condensations in embryonic chicken limbs. The computational domain is four dimensional in the sense that the cell density depends continuously on two spatial variables as well as two structure variables, namely membrane-bound counterreceptor densities. The biologically proper Dirichlet boundary conditions imposed in the semi-infinite structure variable region is in favor of a meshless method with Gaussian basis functions. Coupled with WENO5 finite difference spatial discretization and the method of integrating factors, the time integration via method of lines achieves optimal complexity. In addition, the proposed scheme can be extended to similar models with more general boundary conditions. Numerical results are provided to showcase the validity of the scheme.


Sign in / Sign up

Export Citation Format

Share Document