scholarly journals Certain Matrix Riemann–Liouville Fractional Integrals Associated with Functions Involving Generalized Bessel Matrix Polynomials

Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 622
Author(s):  
Mohamed Abdalla ◽  
Mohamed Akel ◽  
Junesang Choi

The fractional integrals involving a number of special functions and polynomials have significant importance and applications in diverse areas of science; for example, statistics, applied mathematics, physics, and engineering. In this paper, we aim to introduce a slightly modified matrix of Riemann–Liouville fractional integrals and investigate this matrix of Riemann–Liouville fractional integrals associated with products of certain elementary functions and generalized Bessel matrix polynomials. We also consider this matrix of Riemann–Liouville fractional integrals with a matrix version of the Jacobi polynomials. Furthermore, we point out that a number of Riemann–Liouville fractional integrals associated with a variety of functions and polynomials can be presented, which are presented as problems for further investigations.

2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Shu-Bo Chen ◽  
Saima Rashid ◽  
Muhammad Aslam Noor ◽  
Zakia Hammouch ◽  
Yu-Ming Chu

Abstract Inequality theory provides a significant mechanism for managing symmetrical aspects in real-life circumstances. The renowned distinguishing feature of integral inequalities and fractional calculus has a solid possibility to regulate continuous issues with high proficiency. This manuscript contributes to a captivating association of fractional calculus, special functions and convex functions. The authors develop a novel approach for investigating a new class of convex functions which is known as an n-polynomial $\mathcal{P}$ P -convex function. Meanwhile, considering two identities via generalized fractional integrals, provide several generalizations of the Hermite–Hadamard and Ostrowski type inequalities by employing the better approaches of Hölder and power-mean inequalities. By this new strategy, using the concept of n-polynomial $\mathcal{P}$ P -convexity we can evaluate several other classes of n-polynomial harmonically convex, n-polynomial convex, classical harmonically convex and classical convex functions as particular cases. In order to investigate the efficiency and supremacy of the suggested scheme regarding the fractional calculus, special functions and n-polynomial $\mathcal{P}$ P -convexity, we present two applications for the modified Bessel function and $\mathfrak{q}$ q -digamma function. Finally, these outcomes can evaluate the possible symmetric roles of the criterion that express the real phenomena of the problem.


2021 ◽  
Vol 58 (2) ◽  
pp. 314-334
Author(s):  
Man-Wai Ho ◽  
Lancelot F. James ◽  
John W. Lau

AbstractPitman (2003), and subsequently Gnedin and Pitman (2006), showed that a large class of random partitions of the integers derived from a stable subordinator of index $\alpha\in(0,1)$ have infinite Gibbs (product) structure as a characterizing feature. The most notable case are random partitions derived from the two-parameter Poisson–Dirichlet distribution, $\textrm{PD}(\alpha,\theta)$, whose corresponding $\alpha$-diversity/local time have generalized Mittag–Leffler distributions, denoted by $\textrm{ML}(\alpha,\theta)$. Our aim in this work is to provide indications on the utility of the wider class of Gibbs partitions as it relates to a study of Riemann–Liouville fractional integrals and size-biased sampling, and in decompositions of special functions, and its potential use in the understanding of various constructions of more exotic processes. We provide characterizations of general laws associated with nested families of $\textrm{PD}(\alpha,\theta)$ mass partitions that are constructed from fragmentation operations described in Dong et al. (2014). These operations are known to be related in distribution to various constructions of discrete random trees/graphs in [n], and their scaling limits. A centerpiece of our work is results related to Mittag–Leffler functions, which play a key role in fractional calculus and are otherwise Laplace transforms of the $\textrm{ML}(\alpha,\theta)$ variables. Notably, this leads to an interpretation within the context of $\textrm{PD}(\alpha,\theta)$ laws conditioned on Poisson point process counts over intervals of scaled lengths of the $\alpha$-diversity.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2294
Author(s):  
Hari Mohan Srivastava

Often referred to as special functions or mathematical functions, the origin of many members of the remarkably vast family of higher transcendental functions can be traced back to such widespread areas as (for example) mathematical physics, analytic number theory and applied mathematical sciences. Here, in this survey-cum-expository review article, we aim at presenting a brief introductory overview and survey of some of the recent developments in the theory of several extensively studied higher transcendental functions and their potential applications. For further reading and researching by those who are interested in pursuing this subject, we have chosen to provide references to various useful monographs and textbooks on the theory and applications of higher transcendental functions. Some operators of fractional calculus, which are associated with higher transcendental functions, together with their applications, have also been considered. Many of the higher transcendental functions, especially those of the hypergeometric type, which we have investigated in this survey-cum-expository review article, are known to display a kind of symmetry in the sense that they remain invariant when the order of the numerator parameters or when the order of the denominator parameters is arbitrarily changed.


Physics ◽  
2020 ◽  
Vol 2 (3) ◽  
pp. 352-367
Author(s):  
Slobodan Babic ◽  
Cevdet Akyel

In this paper, we give new formulas for calculating the self-inductance for circular coils of the rectangular cross-sections with the radial and the azimuthal current densities. These formulas are given by the single integration of the elementary functions which are integrable on the interval of the integration. From these new expressions, we can obtain the special cases for the self-inductance of the thin-disk pancake and the thin-wall solenoids that confirm the validity of this approach. For the asymptotic cases, the new formula for the self-inductance of the thin-wall solenoid is obtained for the first time in the literature. In this paper, we do not use special functions such as the elliptical integrals of the first, second and third kind, nor Struve and Bessel functions because that is very tedious work. The results of this work are compared with already different known methods and all results are in excellent agreement. We consider this approach novel because of its simplicity in the self-inductance calculation of the previously-mentioned configurations.


1963 ◽  
Vol 6 (1) ◽  
pp. 71-103 ◽  
Author(s):  
G. F. D. Duff ◽  
R. A. Ross

Linear differential equations both ordinary and partial are often studied by means of Green's functions. One reason for this is that linearity permits superposition of solutions. A Green's function describes the "effect" of a point source, and the description of line, surface, or volume sources is achieved by superposing, that is to say, integrating, this function over the source distribution.For equations with constant coefficients the use of integral transforms permits the calculation of such source functions in the form of integrals. Only in the simplest cases is explicit evaluation by elementary functions possible, and this has perforce led to the use of asymptotic estimates, which so thoroughly pervade the domain of applied mathematics.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
D. M. Martinez ◽  
M. Rahmani ◽  
C. Burbadge ◽  
C. Hoehr

AbstractWhile the dose deposition of charged hadrons has received much attention over the last decades starting in 1930 with the publication of the Bethe equation, there are still practical obstacles in implementing it in fields like radiotherapy and isotope production on cyclotrons. This is especially true if the target material consists of non-homogeneous materials, either consisting of a mixture of different elements or experiencing phase changes during irradiation. While Monte-Carlo methods have had great success in describing these more difficult target materials, they come at a computational cost, especially if the problem is time-dependent. This can greatly hinder optimal advancement in therapy and isotope targetry. Here, a regular perturbation method is used to solve the Bethe equation in the limit of small relativistic effects. Particular focus is given to incident energy level relevant to radionuclide production and radiotherapy applications, i.e. 10–200 MeV. We present a series solution for the range and dose distribution in terms of elementary functions, as opposed to special functions which will aid in uptake by practitioners.


2017 ◽  
Vol 26 (03) ◽  
pp. 1750014 ◽  
Author(s):  
S. D. Maharaj ◽  
D. Kileba Matondo ◽  
P. Mafa Takisa

Several new families of exact solution to the Einstein–Maxwell system of differential equations are found for anisotropic charged matter. The spacetime geometry is that of Finch and Skea which satisfies all criteria for physical acceptability. The exact solutions can be expressed in terms of elementary functions, Bessel functions and modified Bessel functions. When a parameter is restricted to be an integer then the special functions reduce to simple elementary functions. The uncharged model of Finch and Skea [R. Finch and J. E. F. Skea, Class. Quantum Grav. 6 (1989) 467.] and the charged model of Hansraj and Maharaj [S. Hansraj and S. D. Maharaj, Int. J. Mod. Phys. D 15 (2006) 1311.] are regained as special cases. The solutions found admit a barotropic equation of state. A graphical analysis indicates that the matter and electric quantities are well behaved.


2015 ◽  
Vol 597 ◽  
pp. 012023 ◽  
Author(s):  
Enrico Celeghini ◽  
Mariano A del Olmo ◽  
Miguel A Velasco

Sign in / Sign up

Export Citation Format

Share Document