scholarly journals Density Functional Theory Studies and Molecular Docking on Xanthohumol, 8-Prenylnaringenin and Their Symmetric Substitute Diethanolamine Derivatives as Inhibitors for Colon Cancer-Related Proteins

Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 948
Author(s):  
Manos C. Vlasiou ◽  
Christos C. Petrou ◽  
Yiannis Sarigiannis ◽  
Kyriaki S. Pafiti

Diethanolamine is a tridentate symmetric ligand that is used for organic synthesis to increase metal chelation or alter the molecular polarities. Prenylated flavonoids are well known for their anticancer properties even in colon cancer. Colorectal cancer is a major threat to society causing death through metastasis to several patients with stage IV. Here, we provided altered structures of xanthohumol and 8-prenylanaringenin of the symmetric ligand diethanolamine, based on theoretical studies that are showing better binding affinities to several colon cancer-related proteins. Using molecular docking and dynamics, alongside density function theory and ADMET studies we are representing these two new derivatives of prenylated flavonoids having promising results against this disease.

Author(s):  
Manos C. Vlasiou ◽  
Christos C. Petrou ◽  
Yiannis Sarigiannis ◽  
Kyriaki S. Pafiti

Colorectal cancer is a major threat to the society causing the death through metastasis to several patients with stage IV. Computational tools provide a relatively quick procedure in order to evaluate several molecules for their drug activity. Prenylated flavonoids are well known for their anticancer properties even in colon cancer. Here, we provided altered structures of chalcones, based on theoretical studies that are showing better binding affinities to several colon cancer related proteins. Using molecular docking and dynamics, alongside with density function theory and ADMET studies we are representing two new derivatives of Xanthohumol prenylated flavonoids having promising results against this disease.


2019 ◽  
Vol 8 (3) ◽  
pp. 225-231
Author(s):  
Ehimen Annastasia ERAZUA ◽  
◽  
Babatunde Benjamin ADELEKE ◽  

There is a continuous need to discover and obtain more efficient drug-like molecule to suppress cancer in human being. Recently researchers are using molecular docking technique to improve the understanding of the interaction between drug and receptor, in other to obtain novel drugs for more efficient usage. Anticancer activities of some selected flavonoids were studied using quantum chemical method through Density Functional Theory (DFT) and molecular docking approach. These Flavoniods were docked against breast cancer cell line (3s7s) using Autodock tool, AutoDockVina as docking tools and Biovia Discovery Studio 2017 for post docking analysis. The binding affinity obtained was used to correlate the inhibitory activity of these flavoniods with their calculated molecular descriptors. The obtained binding energy showed that quercetin has the highest inhibition efficiency hence it has the highest ability to inhibit 3s7s than other studied compounds. It was observed that some molecular descriptor such as band gap, dipole moment, logP and EHOMO, were significant to the inhibiting ability of quercetin in the active site of the protein.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3631
Author(s):  
Ahmed M. Deghady ◽  
Rageh K. Hussein ◽  
Abdulrahman G. Alhamzani ◽  
Abeer Mera

The present investigation informs a descriptive study of 1-(4-Hydroxyphenyl) -3-phenylprop-2-en-1-one compound, by using density functional theory at B3LYP method with 6-311G** basis set. The oxygen atoms and π-system revealed a high chemical reactivity for the title compound as electron donor spots and active sites for an electrophilic attack. Quantum chemical parameters such as hardness (η), softness (S), electronegativity (χ), and electrophilicity (ω) were yielded as descriptors for the molecule’s chemical behavior. The optimized molecular structure was obtained, and the experimental data were matched with geometrical analysis values describing the molecule’s stable structure. The computed FT-IR and Raman vibrational frequencies were in good agreement with those observed experimentally. In a molecular docking study, the inhibitory potential of the studied molecule was evaluated against the penicillin-binding proteins of Staphylococcus aureus bacteria. The carbonyl group in the molecule was shown to play a significant role in antibacterial activity, four bonds were formed by the carbonyl group with the key protein of the bacteria (three favorable hydrogen bonds plus one van der Waals bond) out of six interactions. The strong antibacterial activity was also indicated by the calculated high binding energy (−7.40 kcal/mol).


2020 ◽  
pp. 174751982097858
Author(s):  
M Vraneš ◽  
S Ostojić ◽  
Č Podlipnik ◽  
A Tot

Comparative molecular docking studies on creatine and guanidinoacetic acid, as well as their phosphorylated analogues, creatine phosphate, and phosphorylated guanidinoacetic acid, are investigated. Docking and density functional theory studies are carried out for muscle creatine kinase. The changes in the geometries of the ligands before and after binding to the enzyme are investigated to explain the better binding of guanidinoacetic acid and phosphorylated guanidinoacetic acid compared to creatine and creatine phosphate.


2017 ◽  
Vol 72 (12) ◽  
pp. 1131-1138 ◽  
Author(s):  
Mehdi Aramideh ◽  
Mahmoud Mirzaei ◽  
Ghadamali Khodarahmi ◽  
Oğuz Gülseren

AbstractCancer is one of the major problems for so many people around the world; therefore, dedicating efforts to explore efficient therapeutic methodologies is very important for researchers of life sciences. In this case, nanostructures are expected to be carriers of medicinal compounds for targeted drug design and delivery purposes. Within this work, the graphene (Gr)-functionalised derivatives of capecitabine (CAP), as a representative anticancer, have been studied based on density functional theory calculations. Two different sizes of Gr molecular models have been used for the functionalisation of CAP counterparts, CAP-Gr3 and CAP-Gr5, to explore the effects of Gr-functionalisation on the original properties of CAP. All singular and functionalised molecular models have been optimised and the molecular and atomic scale properties have been evaluated for the optimised structures. Higher formation favourability has been obtained for CAP-Gr5 in comparison with CAP-Gr3 and better structural stability has been obtained in the water-solvated system than the isolated gas-phase system for all models. The CAP-Gr5 model could play a better role of electron transferring in comparison with the CAP-Gr3 model. As a concluding remark, the molecular properties of CAP changed from singular to functionalised models whereas the atomic properties remained almost unchanged, which is expected for a carrier not to use significant perturbations to the original properties of the carried counterpart.


2021 ◽  
Vol 1223 ◽  
pp. 128948
Author(s):  
H. Marshan Robert ◽  
D Usha ◽  
M. Amalanathan ◽  
R. Racil Jeya Geetha ◽  
M. Sony Michael Mary

Sign in / Sign up

Export Citation Format

Share Document