scholarly journals An Efficient Mechanism to Solve Fractional Differential Equations Using Fractional Decomposition Method

Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 984
Author(s):  
Mahmoud S. Alrawashdeh ◽  
Seba A. Migdady ◽  
Ioannis K. Argyros

We present some new results that deal with the fractional decomposition method (FDM). This method is suitable to handle fractional calculus applications. We also explore exact and approximate solutions to fractional differential equations. The Caputo derivative is used because it allows traditional initial and boundary conditions to be included in the formulation of the problem. This is of great significance for large-scale problems. The study outlines the significant features of the FDM. The relation between the natural transform and Laplace transform is a symmetrical one. Our work can be considered as an alternative to existing techniques, and will have wide applications in science and engineering fields.

2021 ◽  
Vol 5 (2) ◽  
pp. 43
Author(s):  
Gerd Baumann

We shall discuss three methods of inverse Laplace transforms. A Sinc-Thiele approximation, a pure Sinc, and a Sinc-Gaussian based method. The two last Sinc related methods are exact methods of inverse Laplace transforms which allow us a numerical approximation using Sinc methods. The inverse Laplace transform converges exponentially and does not use Bromwich contours for computations. We apply the three methods to Mittag-Leffler functions incorporating one, two, and three parameters. The three parameter Mittag-Leffler function represents Prabhakar’s function. The exact Sinc methods are used to solve fractional differential equations of constant and variable differentiation order.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
A. K. Gupta ◽  
S. Saha Ray

Fractional calculus is a field of applied mathematics which deals with derivatives and integrals of arbitrary orders. The fractional calculus has gained considerable importance during the past decades mainly due to its application in diverse fields of science and engineering such as viscoelasticity, diffusion of biological population, signal processing, electromagnetism, fluid mechanics, electrochemistry, and many more. In this paper, we review different wavelet methods for solving both linear and nonlinear fractional differential equations. Our goal is to analyze the selected wavelet methods and assess their accuracy and efficiency with regard to solving fractional differential equations. We discuss challenges faced by researchers in this field, and we emphasize the importance of interdisciplinary effort for advancing the study on various wavelets in order to solve differential equations of arbitrary order.


Author(s):  
J. Vanterler da C. Sousa ◽  
Rubens F. Camargo ◽  
E. Capelas de Oliveira ◽  
Gastáo S. F. Frederico

Author(s):  
Constantin Bota ◽  
Bogdan Căruntu

AbstractIn this paper a new way to compute analytic approximate polynomial solutions for a class of nonlinear variable order fractional differential equations is proposed, based on the Polynomial Least Squares Method (PLSM). In order to emphasize the accuracy and the efficiency of the method several examples are included.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Khalid Hattaf

This paper aims to study the stability of fractional differential equations involving the new generalized Hattaf fractional derivative which includes the most types of fractional derivatives with nonsingular kernels. The stability analysis is obtained by means of the Lyapunov direct method. First, some fundamental results and lemmas are established in order to achieve the goal of this study. Furthermore, the results related to exponential and Mittag–Leffler stability existing in recent studies are extended and generalized. Finally, illustrative examples are presented to show the applicability of our main results in some areas of science and engineering.


Author(s):  
S. O. Ajibola ◽  
E. O. Oghre ◽  
A. G. Ariwayo ◽  
P. O. Olatunji

By fractional generalised Boussinesq equations we mean equations of the form \begin{equation} \Delta\equiv D_{t}^{2\alpha}-[\mathcal{N}(u)]_{xx}-u_{xxxx}=0, \: 0<\alpha\le1,\label{main}\nonumber \end{equation} where $\mathcal{N}(u)$ is a differentiable function and $\mathcal{N}_{uu}\ne0$ (to ensure nonlinearity). In this paper we lay emphasis on the cubic Boussinesq and Boussinesq-like equations of fractional order and we apply the Laplace homotopy analysis method (LHAM) for their rational and solitary wave solutions respectively. It is true that nonlinear fractional differential equations are often difficult to solve for their {\em exact} solutions and this single reason has prompted researchers over the years to come up with different methods and approach for their {\em analytic approximate} solutions. Most of these methods require huge computations which are sometimes complicated and a very good knowledge of computer aided softwares (CAS) are usually needed. To bridge this gap, we propose a method that requires no linearization, perturbation or any particularly restrictive assumption that can be easily used to solve strongly nonlinear fractional differential equations by hand and simple computer computations with a very quick run time. For the closed form solution, we set $\alpha =1$ for each of the solutions and our results coincides with those of others in the literature.


Symmetry ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1755
Author(s):  
M. S. Al-Sharif ◽  
A. I. Ahmed ◽  
M. S. Salim

Fractional differential equations have been applied to model physical and engineering processes in many fields of science and engineering. This paper adopts the fractional-order Chelyshkov functions (FCHFs) for solving the fractional differential equations. The operational matrices of fractional integral and product for FCHFs are derived. These matrices, together with the spectral collocation method, are used to reduce the fractional differential equation into a system of algebraic equations. The error estimation of the presented method is also studied. Furthermore, numerical examples and comparison with existing results are given to demonstrate the accuracy and applicability of the presented method.


Sign in / Sign up

Export Citation Format

Share Document