scholarly journals Comparative Study of Univariate and Multivariate Long Short-Term Memory for Very Short-Term Forecasting of Global Horizontal Irradiance

Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1544
Author(s):  
Ashis Kumar Mandal ◽  
Rikta Sen ◽  
Saptarsi Goswami ◽  
Basabi Chakraborty

Accurate global horizontal irradiance (GHI) forecasting is crucial for efficient management and forecasting of the output power of photovoltaic power plants. However, developing a reliable GHI forecasting model is challenging because GHI varies over time, and its variation is affected by changes in weather patterns. Recently, the long short-term memory (LSTM) deep learning network has become a powerful tool for modeling complex time series problems. This work aims to develop and compare univariate and several multivariate LSTM models that can predict GHI in Guntur, India on a very short-term basis. To build the multivariate time series models, we considered all possible combinations of temperature, humidity, and wind direction variables along with GHI as inputs and developed seven multivariate models, while in the univariate model, we considered only GHI variability. We collected the meteorological data for Guntur from 1 January 2016 to 31 December 2016 and built 12 datasets, each containing variability of GHI, temperature, humidity, and wind direction of a month. We then constructed the models, each of which measures up to 2 h ahead of forecasting of GHI. Finally, to measure the symmetry among the models, we evaluated the performances of the prediction models using root mean square error (RMSE) and mean absolute error (MAE). The results indicate that, compared to the univariate method, each multivariate LSTM performs better in the very short-term GHI prediction task. Moreover, among the multivariate LSTM models, the model that incorporates the temperature variable with GHI as input has outweighed others, achieving average RMSE values 0.74 W/m2–1.5 W/m2.

2021 ◽  
Vol 11 (11) ◽  
pp. 5141
Author(s):  
Wenying Lyu ◽  
Honghai Zhang ◽  
Junqiang Wan ◽  
Lei Yang

Traffic safety has been thought of as a basic feature of transportation, recent developments in civil aviation have emphasized the need for risk identification and safety prediction. This study aims to increase en-route flight safety through the development of prediction models for flight conflicts. Firstly, flight conflicts time series and traffic parameters are extracted from historical ADS-B data. In the second step, a Long Short-Term Memory (LSTM) model is trained to make a one-step-ahead prediction on the flight conflict time series. The results show that the LSTM model has the greatest prediction effect (MAE 0.3901) with comparison to other models. Based on that, we add traffic parameters (volume, density, velocity) into the LSTM model as new input variables and issue a comprehensive analysis of the relative predictive power of traffic parameters. The accuracy of prediction model is validated with a mean error of less than 3%. Based on the improvements of model performance brought by traffic parameters, LSTM models with a single traffic parameter are proposed for further discussion. The results illustrate that volume is the most important factor in promoting prediction accuracy and density has an advantage of improvement in the aspect of model stability.


2020 ◽  
Vol 10 (22) ◽  
pp. 8169
Author(s):  
Tae-Woong Yoo ◽  
Il-Seok Oh

In this paper, we propose seasonal long short-term memory (SLSTM), which is a method for predicting the sales of agricultural products, to stabilize supply and demand. The SLSTM model is trained using the seasonality attributes of week, month, and quarter as additional inputs to historical time-series data. The seasonality attributes are entered into the SLSTM network model individually or in combination. The performance of the proposed SLSTM model was compared with those of auto_arima, Prophet, and a standard LSTM in terms of three performance metrics (mean absolute error (MAE), root mean squared error (RMSE), and normalization mean absolute error (NMAE)). The experimental results show that the error rate of the proposed SLSTM model is significantly lower than those of other classical methods.


2021 ◽  
Vol 13 (24) ◽  
pp. 5000
Author(s):  
Felix Reuß ◽  
Isabella Greimeister-Pfeil ◽  
Mariette Vreugdenhil ◽  
Wolfgang Wagner

To ensure future food security, improved agricultural management approaches are required. For many of those applications, precise knowledge of the distribution of crop types is essential. Various machine and deep learning models have been used for automated crop classification using microwave remote sensing time series. However, the application of these approaches on a large spatial and temporal scale is barely investigated. In this study, the performance of two frequently used algorithms, Long Short-Term Memory (LSTM) networks and Random Forest (RF), for crop classification based on Sentinel-1 time series and meteorological data on a large spatial and temporal scale is assessed. For data from Austria, the Netherlands, and France and the years 2015–2019, scenarios with different spatial and temporal scales were defined. To quantify the complexity of these scenarios, the Fisher Discriminant measurement F1 (FDR1) was used. The results demonstrate that both classifiers achieve similar results for simple classification tasks with low FDR1 values. With increasing FDR1 values, however, LSTM networks outperform RF. This suggests that the ability of LSTM networks to learn long-term dependencies and identify the relation between radar time series and meteorological data becomes increasingly important for more complex applications. Thus, the study underlines the importance of deep learning models, including LSTM networks, for large-scale applications.


SEMINASTIKA ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 39-46
Author(s):  
Khalis Sofi ◽  
Aswan Supriyadi Sunge ◽  
Sasmitoh Rahmad Riady ◽  
Antika Zahrotul Kamalia

Penelitian ini bertujuan untuk memprediksi harga saham dengan membandingkan algoritma Linear Regression, Long Short-Term Memory (LSTM), dan Gated Recurrent Unit (GRU) dengan dataset publik kemudian menentukan performa terbaik dari ketiga algoritma tersebut. Dataset yang diuji bersumber dari Indonesia Stock Exchange (IDX), yaitu dataset harga saham KEJU berbentuk time series dari tanggal 15 November 2019 sampai dengan 08 Juni 2021. Parameter yang digunakan untuk pengukuran perbandingan adalah RMSE (Root Mean Square Error), MSE (Mean Square Error), dan MAE (Mean Absolute Error). Setelah dilakukan proses training dan testing, dihasilkan sebuah analisis bahwa dari hasil perbandingan algoritma yang digunakan, algoritma Gated Recurrent Unit (GRU) memiliki performance paling baik dibandingkan Linear Regression dan Long-Short Term Memory (LSTM) dalam hal memprediksi harga saham, dibuktikan dengan nilai RMSE, MSE, dan MAE dari uji coba GRU paling rendah, yaitu nilai RMSE 0.034, MSE 0.001, dan nilai MAE 0.024.


2021 ◽  
Vol 11 (19) ◽  
pp. 8995
Author(s):  
Eunju Lee ◽  
Dohee Kim ◽  
Hyerim Bae

The purpose of this study is to improve the prediction of container volumes in Busan ports by applying external variables and time-series data decomposition methods to deep learning prediction models. Previous studies on container volume forecasting were based on traditional statistical methodologies, such as ARIMA, SARIMA, and regression. However, these methods do not explain the complexity and variability of data caused by changes in the external environment, such as the global financial crisis and economic fluctuations. Deep learning can explore the inherent patterns of data and analyze the characteristics (time series, external environmental variables, and outliers); hence, the accuracy of deep learning-based volume prediction models is better than that of traditional models. However, this does not include the study of overall trends (upward, steady, or downward). In this study, a novel deep learning prediction model is proposed that combines prediction and trend identification of container volume. The proposed model explores external variables that are related to container volume, combining port volume time-series decomposition with external variables and deep learning-based multivariate long short-term memory (LSTM) prediction. The results indicate that the proposed model performs better than the traditional LSTM model and follows the trend simultaneously.


2021 ◽  
Vol 42 (18) ◽  
pp. 6921-6944
Author(s):  
Yi Chen ◽  
Yi He ◽  
Lifeng Zhang ◽  
Youdong Chen ◽  
Hongyu Pu ◽  
...  

2021 ◽  
Author(s):  
Pradeep Lall ◽  
Tony Thomas ◽  
Ken Blecker

Abstract Prognostics and Remaining Useful Life (RUL) estimations of complex systems are essential to operational safety, increased efficiency, and help to schedule maintenance proactively. Modeling the remaining useful life of a system with many complexities is possible with the rapid development in the field of deep learning as a computational technique for failure prediction. Deep learning can adapt to multivariate parameters complex and nonlinear behavior, which is difficult using traditional time-series models for forecasting and prediction purposes. In this paper, a deep learning approach based on Long Short-Term Memory (LSTM) network is used to predict the remaining useful life of the PCB at different conditions of temperature and vibration. This technique can identify the different underlying patterns in the time series that can predict the RUL. This study involves feature vector identification and RUL estimations for SAC305, SAC105, and Tin Lead solder PCBs under different vibration levels and temperature conditions. The acceleration levels of vibration are fixed at 5g and 10g, while the temperature levels are 55°C and 100°C. The test board is a multilayer FR4 configuration with JEDEC standard dimensions consists of twelve packages arranged in a rectangular pattern. Strain signals are acquired from the backside of the PCB at symmetric locations to identify the failure of all the packages during vibration. The strain signals are resistance values that are acquired simultaneously during the experiment until the failure of most of the packages on the board. The feature vectors are identified from statistical analysis on the strain signals frequency and instantaneous frequency components. The principal component analysis is used as a data reduction technique to identify the different patterns produced from the four strain signals with failures of the packages during vibration. LSTM deep learning method is used to model the RUL of the packages at different individual operating conditions of vibration for all three solder materials involved in this study. A combined model for RUL prediction for a material that can take care of the changes in the operating conditions is also modeled for each material.


Sign in / Sign up

Export Citation Format

Share Document