scholarly journals Top-N Recommender Systems Using Genetic Algorithm-Based Visual-Clustering Methods

Symmetry ◽  
2016 ◽  
Vol 8 (7) ◽  
pp. 54 ◽  
Author(s):  
Ukrit Marung ◽  
Nipon Theera-Umpon ◽  
Sansanee Auephanwiriyakul
2007 ◽  
Vol 16 (06) ◽  
pp. 919-934
Author(s):  
YONGGUO LIU ◽  
XIAORONG PU ◽  
YIDONG SHEN ◽  
ZHANG YI ◽  
XIAOFENG LIAO

In this article, a new genetic clustering algorithm called the Improved Hybrid Genetic Clustering Algorithm (IHGCA) is proposed to deal with the clustering problem under the criterion of minimum sum of squares clustering. In IHGCA, the improvement operation including five local iteration methods is developed to tune the individual and accelerate the convergence speed of the clustering algorithm, and the partition-absorption mutation operation is designed to reassign objects among different clusters. By experimental simulations, its superiority over some known genetic clustering methods is demonstrated.


2018 ◽  
Vol 29 (1) ◽  
pp. 653-663 ◽  
Author(s):  
Ritu Meena ◽  
Kamal K. Bharadwaj

Abstract Many recommender systems frequently make suggestions for group consumable items to the individual users. There has been much work done in group recommender systems (GRSs) with full ranking, but partial ranking (PR) where items are partially ranked still remains a challenge. The ultimate objective of this work is to propose rank aggregation technique for effectively handling the PR problem. Additionally, in real applications, most of the studies have focused on PR without ties (PRWOT). However, the rankings may have ties where some items are placed in the same position, but where some items are partially ranked to be aggregated may not be permutations. In this work, in order to handle problem of PR in GRS for PRWOT and PR with ties (PRWT), we propose a novel approach to GRS based on genetic algorithm (GA) where for PRWOT Spearman foot rule distance and for PRWT Kendall tau distance with bucket order are used as fitness functions. Experimental results are presented that clearly demonstrate that our proposed GRS based on GA for PRWOT (GRS-GA-PRWOT) and PRWT (GRS-GA-PRWT) outperforms well-known baseline GRS techniques.


Author(s):  
Emmanuel Buabin

The objective is a neural-based feature selection in intelligent recommender systems. In particular, a hybrid neural genetic architecture is modeled based on human nature, interactions, and behaviour. The main contribution of this chapter is the development of a novel genetic algorithm based on human nature, interactions, and behaviour. The novel genetic algorithm termed “Buabin Algorithm” is fully integrated with a hybrid neural classifier to form a Hybrid Neural Genetic Architecture. The research presents GA in a more attractive manner and opens up the various departments of a GA for active research. Although no scientific experiment is conducted to compare network performance with standard approaches, engaged techniques reveal drastic reductions in genetic operator operations. For illustration purposes, the UCI Molecular Biology (Splice Junction) dataset is used. Overall, “Buabin Algorithm” seeks to integrate human related interactions into genetic algorithms as imitate human genetics in recommender systems design and understand underlying datasets explicitly.


Author(s):  
Minakshi Sharma ◽  
Saourabh Mukherjee

<p>Imaging plays an important role in medical field like medical diagnosis, treatment planning and patient follow up. Image segmentation is the backbone process to accomplish these tasks by dividing an image in to meaningful parts which share similar properties.  Medical Resonance Imaging (MRI) is primary diagnostic technique to do image segmentation. There are several techniques proposed for image segmentation of different parts of body like Region growing, Thresholding, Clustering methods and Soft computing techniques  (Fuzzy Logic, Neural Network, Genetic Algorithm).The proposed research work uses Grey level Co-occurrence Matrix (GLCM) for texture feature extraction, ANFIS(Adaptive Network Fuzzy inference System) plus  Genetic Algorithm for feature selection and FCM(Fuzzy C-Means) for segmentation of  Astrocytoma (Brain Tumor) with all four Grades. The comparative study between FCM, FCM plus K-mean, Genetic Algorithm, ANFIS and proposed technique shows improved Accuracy, Sensitivity and Specificity.</p>


Author(s):  
B. Vaibhav Srivastava ◽  
Shashikant Sharma ◽  
Deepanwita Datta ◽  
Guduri Sriram ◽  
Saket Jambhulkar ◽  
...  

2012 ◽  
pp. 684-705 ◽  
Author(s):  
Luis Terán ◽  
Andreas Ladner ◽  
Jan Fivaz ◽  
Stefani Gerber

The use of the Internet now has a specific purpose: to find information. Unfortunately, the amount of data available on the Internet is growing exponentially, creating what can be considered a nearly infinite and ever-evolving network with no discernable structure. This rapid growth has raised the question of how to find the most relevant information. Many different techniques have been introduced to address the information overload, including search engines, Semantic Web, and recommender systems, among others. Recommender systems are computer-based techniques that are used to reduce information overload and recommend products likely to interest a user when given some information about the user’s profile. This technique is mainly used in e-Commerce to suggest items that fit a customer’s purchasing tendencies. The use of recommender systems for e-Government is a research topic that is intended to improve the interaction among public administrations, citizens, and the private sector through reducing information overload on e-Government services. More specifically, e-Democracy aims to increase citizens’ participation in democratic processes through the use of information and communication technologies. In this chapter, an architecture of a recommender system that uses fuzzy clustering methods for e-Elections is introduced. In addition, a comparison with the smartvote system, a Web-based Voting Assistance Application (VAA) used to aid voters in finding the party or candidate that is most in line with their preferences, is presented.


2019 ◽  
Vol 23 (2) ◽  
pp. 1177-1195 ◽  
Author(s):  
Weifeng Wang ◽  
Bing Lou ◽  
Xiong Li ◽  
Xizhong Lou ◽  
Ning Jin ◽  
...  

Author(s):  
Luis Terán ◽  
Andreas Ladner ◽  
Jan Fivaz ◽  
Stefani Gerber

The use of the Internet now has a specific purpose: to find information. Unfortunately, the amount of data available on the Internet is growing exponentially, creating what can be considered a nearly infinite and ever-evolving network with no discernable structure. This rapid growth has raised the question of how to find the most relevant information. Many different techniques have been introduced to address the information overload, including search engines, Semantic Web, and recommender systems, among others. Recommender systems are computer-based techniques that are used to reduce information overload and recommend products likely to interest a user when given some information about the user’s profile. This technique is mainly used in e-Commerce to suggest items that fit a customer’s purchasing tendencies. The use of recommender systems for e-Government is a research topic that is intended to improve the interaction among public administrations, citizens, and the private sector through reducing information overload on e-Government services. More specifically, e-Democracy aims to increase citizens’ participation in democratic processes through the use of information and communication technologies. In this chapter, an architecture of a recommender system that uses fuzzy clustering methods for e-Elections is introduced. In addition, a comparison with the smartvote system, a Web-based Voting Assistance Application (VAA) used to aid voters in finding the party or candidate that is most in line with their preferences, is presented.


2012 ◽  
Vol 263-266 ◽  
pp. 889-897
Author(s):  
Xiang Xian Zhu ◽  
Su Feng Lu

Wireless sensor networks (WSNs) lifetime for large-scale surveillance systems is defined as the time span that all targets can be covered. How to manage the combination of the sensor nodes efficiently to prolong the whole network’s lifetime while insuring the network reliability, it is one of the most important problems to research in WSNs. An effective optimization framework is then proposed, where genetic algorithm and clonal selection algorithm are hybridized to enhance the searching ability. Our goal can be described as minimizing the number of active nodes and the scheduling cost, thus reducing the overall energy consumption to prolong the whole network’s lifetime with certain coverage rate insured. We compare the proposed algorithm with different clustering methods used in the WSNs. The simulation results show that the proposed algorithm has higher efficiency and can achieve better network lifetime and data delivery at the base station.


Sign in / Sign up

Export Citation Format

Share Document