scholarly journals On the Part Quality, Process Parameters and In-Die Pressures in Indirect Squeeze Casting

Technologies ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 95
Author(s):  
Anders E. W. Jarfors ◽  
Jie Zhou ◽  
Andong Du ◽  
Jinchuan Zheng ◽  
Gegang Yu

Squeeze casting is a process that can produce the highest quality castings. In the current study, the effect of the process settings and the in-die conditions on rejection rates is studied through a full-scale experimental study. Factors affecting the as-cast part quality were investigated in the current study from two different viewpoints. The first part of the study was to investigate the influence of the process settings on the part rejection rate, and the second was to understand the conditions in the die and the effects on the part rejection rate to understand better the reasons and sensitivity of the squeeze casting process.

2017 ◽  
Vol 867 ◽  
pp. 64-70
Author(s):  
N. Nagendran ◽  
N. Gayathri ◽  
V.K. Shanmuganathan ◽  
S. Praveen

Conventional casting process cannot produce parts as strong as forged parts. Also there are chances of many casting defects such as porosity, hot tears, shrinkage, pin holes, blow holes, mould shift flash, slag, short casting, when casting method is used for fabrication. Thus cast parts only have low mechanical properties. Recent trend is to use Squeeze Casting, which results in superior mechanical and casting properties. This technique is a hybrid metal forming process combining features of both casting and forging in one operation. This process is suitable for low melting alloys like iron and nickel with mechanical properties enhancement. Reduction in micro porosity in cast part and also reduction in machining. Historically, the series of LM were developed for high strength, corrosion resistance, and good machinability for many applications. In this study Squeeze Casting process has been used, since it has porosity free equiaxed grain components of LM 25 composition and cylindrical shaped castings were manufactured successfully by squeeze casting machine at high temperature and high pressure. The first part of the study is about the microstructure of the LM 25 Al-7 Si-0.3 Mg-0.5 Fe alloy. The casting products were made by addition of nano particles and without nano particles. The size of bar casted was by squeeze casting process. It was 260 mm*46mm (7 Pieces). Microstructure of Cast without squeeze and without stirrer, without squeeze and with stirrer, with squeeze and with stirrer Alloys was studied. The second part of the work was the heat treatment process of the finished product. Heat treatment process was conducted at 490○C and for the heat treated metals was quenched at 30○C (water) for the heat treated and unheated metal casting product were taken and microstructure were studied. The results were compared before and after the heat treatment process for addition of nano particles and without nano particles.


2014 ◽  
Vol 20 (1) ◽  
Author(s):  
Ildiko Peter ◽  
Mario Rosso ◽  
Christian Castella

2011 ◽  
Vol 277 ◽  
pp. 27-35 ◽  
Author(s):  
Dwi Rahmalina ◽  
Bondan Tiara Sofyan ◽  
Bambang Suharno ◽  
Eddy S. Siradj

Steel wire rope – reinforced aluminium composite - has been developed to improve the ballistic properties and mobility of armour material. Critical to obtaining ballistic resistance is that the materials must be sufficiently hard and strong, especially at the surface where a projectile will first make impact. To obtain this resistance, aluminium alloys can be strengthened by adding Cu and Mg. This research studied the ballistic properties of aluminium composites with varied Cu and Mg content. The matrix used in this study was an Al-7Si master alloy with 0.08-1.03 wt. % Mg and 0.05-3.75 wt. % Cu, both independently and in combination. A high carbon steel wire rope was used as strengthening material. The samples were produced through the squeeze casting process with a pressure of 1 MPa at semi-solid melting temperatures of 590-610 °C. The slab was then rolled for 10 % reduction to increase the hardness. Ballistic testing was performed in accordance with ASTM F1233 by using a 9 mm calibre projectile and 900 direction. Micro structural observation was conducted in the as-cast and ballistic samples, performed with optical microscope and scanning electron microscope (SEM). The results showed that squeeze casting may improve interfacial wettability and reduce void. The increase in Mg resulted in the decline of interfacial voids, but Cu addition tended to increase them. The aluminium armour was able to withstand a 9 mm calibre projectile, although some cracks were visible. The wire rope was not effective in stopping the penetration of a 7.62 mm calibre projectile.


2019 ◽  
Vol 1 (1) ◽  
pp. 38-48
Author(s):  
A. Sathishkumar ◽  
Gowtham A ◽  
M. Jeyasuriya ◽  
S. DineshBabu

Aluminum alloy is widely used in automotive, aerospace and other engineering industries because of its excellent mechanical properties. The main objective is to enhance 6061 Al alloy’s mechanical properties by producing 6061-B4C composite through squeeze casting process. Experimentation was carried out with different micron sizes and weight fraction of B4C particles. The mechanical properties of reinforced metal matrix were experimentally investigated in terms of Ultimate Tensile Strength and Hardness. We observe that these two properties are improved by the reinforcement of B4C particles and applied squeeze pressure.


Sign in / Sign up

Export Citation Format

Share Document