scholarly journals Air Quality in the Harbin-Changchun Metropolitan Area in Northeast China: Unique Episodes and New Trends

Toxics ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 357
Author(s):  
Yulong Wang ◽  
Youwen Sun ◽  
Gerong Zhao ◽  
Yuan Cheng

Because of the unique geographical, climate, and anthropogenic emission characteristics, it is meaningful to explore the air pollution in the Harbin-Changchun (HC) metropolitan area. In this study, the Air Quality Index (AQI) and the corresponding major pollutant were investigated for the HC cities, based on the air quality data derived from the China National Environmental Monitoring Center. The number of days with the air quality level of “good” gradually increased during recent years, pointing to an improvement of the air quality in HC. It was also found that ozone, a typical secondary pollutant, exhibited stronger inter-city correlations compared to typical primary pollutants such as carbon monoxide and nitrogen dioxide. In addition, for nearly all the HC cities, the concentrations of fine particulate matter (PM2.5) decreased substantially in 2020 compared to 2015. However, this was not the case for ozone, with the most significant increase of ozone observed for HC’s central city, Harbin. This study highlights the importance of ozone reduction for further improving HC’s air quality, and the importance of agricultural fire control for eliminating heavily-polluted and even off-the-charts PM2.5 episodes.

2019 ◽  
pp. tobaccocontrol-2018-054895 ◽  
Author(s):  
Sean Semple ◽  
Ruaraidh Dobson ◽  
Helen Sweeting ◽  
Ashley Brown ◽  
Kate Hunt

ObjectiveTo determine secondhand smoke (SHS) concentrations in prisons during the week of implementation of a new, national prisons smoke-free policy.DesignRepeated measurement of SHS concentrations immediately before and after implementation of smoke-free policies across all 15 prisons in Scotland, and comparison with previously gathered baseline data from 2016.MethodsFine particulate matter (PM2.5) measurements at a fixed location over a continuous 6-day period were undertaken at the same site in each prison as previously carried out in 2016. Outdoor air quality data from the nearest local authority measurement station were acquired to determine the contribution of outdoor air pollution to indoor prison measurement of PM2.5.ResultsAir quality improved in all prisons comparing 2016 data with the first full working day postimplementation (overall median reduction −81%, IQR −76% to −91%). Postimplementation indoor PM2.5 concentrations were broadly comparable with outdoor concentrations suggesting minimal smoking activity during the period of measurement.ConclusionsThis is the first evaluation of changes in SHS concentrations across all prisons within a country that has introduced nationwide prohibition of smoking in prisons. All prisons demonstrated immediate substantial reductions in PM2.5 following policy implementation. A smoke-free prisons policy reduces the exposure of prison staff and prisoners to SHS.


2020 ◽  
Vol 171 ◽  
pp. 02009
Author(s):  
Rosanny Sihombing ◽  
Sabo Kwada Sini ◽  
Matthias Fitzky

As the population of people migrating to cities keeps increasing, concerns have been raised about air quality in cities and how it impacts everyday life. Thus, it is important to demonstrate ways of avoiding polluted areas. The approach described in this paper is intended to draw attention to polluted areas and help pedestrians and cyclists to achieve the lowest possible level of air pollution when planning daily routes. We utilise real-time air quality data which is obtained from monitoring stations across the world. The data consist of the geolocation of monitoring stations as well as index numbers to scale the air quality level in every corresponding monitoring stations. When the air quality level is considered having a moderate health concern for people with respiratory disease, such as asthma, an alternative route that avoid air pollution will be calculated so that pedestrians and cyclists can be informed. The implementation can visualize air quality level in several areas in 3D map as well as informs health-aware route for pedestrian and cyclist. It automatically adjusts the observed air quality areas based on the availability of monitoring stations. The proposed approach results in a prototype of a health-aware 3D navigation system for pedestrian and cyclist.


Author(s):  
Ahmad R. Alsaber ◽  
Jiazhu Pan ◽  
Adeeba Al-Hurban 

In environmental research, missing data are often a challenge for statistical modeling. This paper addressed some advanced techniques to deal with missing values in a data set measuring air quality using a multiple imputation (MI) approach. MCAR, MAR, and NMAR missing data techniques are applied to the data set. Five missing data levels are considered: 5%, 10%, 20%, 30%, and 40%. The imputation method used in this paper is an iterative imputation method, missForest, which is related to the random forest approach. Air quality data sets were gathered from five monitoring stations in Kuwait, aggregated to a daily basis. Logarithm transformation was carried out for all pollutant data, in order to normalize their distributions and to minimize skewness. We found high levels of missing values for NO2 (18.4%), CO (18.5%), PM10 (57.4%), SO2 (19.0%), and O3 (18.2%) data. Climatological data (i.e., air temperature, relative humidity, wind direction, and wind speed) were used as control variables for better estimation. The results show that the MAR technique had the lowest RMSE and MAE. We conclude that MI using the missForest approach has a high level of accuracy in estimating missing values. MissForest had the lowest imputation error (RMSE and MAE) among the other imputation methods and, thus, can be considered to be appropriate for analyzing air quality data.


2021 ◽  
Vol 138 ◽  
pp. 104976
Author(s):  
Juan José Díaz ◽  
Ivan Mura ◽  
Juan Felipe Franco ◽  
Raha Akhavan-Tabatabaei

Atmosphere ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 302
Author(s):  
Rajesh Kumar ◽  
Piyush Bhardwaj ◽  
Gabriele Pfister ◽  
Carl Drews ◽  
Shawn Honomichl ◽  
...  

This paper describes a quasi-operational regional air quality forecasting system for the contiguous United States (CONUS) developed at the National Center for Atmospheric Research (NCAR) to support air quality decision-making, field campaign planning, early identification of model errors and biases, and support the atmospheric science community in their research. This system aims to complement the operational air quality forecasts produced by the National Oceanic and Atmospheric Administration (NOAA), not to replace them. A publicly available information dissemination system has been established that displays various air quality products, including a near-real-time evaluation of the model forecasts. Here, we report the performance of our air quality forecasting system in simulating meteorology and fine particulate matter (PM2.5) for the first year after our system started, i.e., 1 June 2019 to 31 May 2020. Our system shows excellent skill in capturing hourly to daily variations in temperature, surface pressure, relative humidity, water vapor mixing ratios, and wind direction but shows relatively larger errors in wind speed. The model also captures the seasonal cycle of surface PM2.5 very well in different regions and for different types of sites (urban, suburban, and rural) in the CONUS with a mean bias smaller than 1 µg m−3. The skill of the air quality forecasts remains fairly stable between the first and second days of the forecasts. Our air quality forecast products are publicly available at a NCAR webpage. We invite the community to use our forecasting products for their research, as input for urban scale (<4 km), air quality forecasts, or the co-development of customized products, just to name a few applications.


Sign in / Sign up

Export Citation Format

Share Document