scholarly journals Mapping the DNA-Binding Motif of Scabin Toxin, a Guanine Modifying Enzyme from Streptomyces scabies

Toxins ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 55
Author(s):  
Maritza Vatta ◽  
Bronwyn Lyons ◽  
Kayla A. Heney ◽  
Taylor Lidster ◽  
A. Rod Merrill

Scabin is a mono-ADP-ribosyltransferase toxin/enzyme and possible virulence factor produced by the agriculture pathogen, Streptomyces scabies. Recently, molecular dynamic approaches and MD simulations revealed its interaction with both NAD+ and DNA substrates. An Essential Dynamics Analysis identified a crab-claw-like mechanism, including coupled changes in the exposed motifs, and the Rβ1-RLa-NLc-STTβ2-WPN-WARTT-(QxE)ARTT sequence motif was proposed as a catalytic signature of the Pierisin family of DNA-acting toxins. A new fluorescence assay was devised to measure the kinetics for both RNA and DNA substrates. Several protein variants were prepared to probe the Scabin-NAD-DNA molecular model and to reveal the reaction mechanism for the transfer of ADP-ribose to the guanine base in the DNA substrate. The results revealed that there are several lysine and arginine residues in Scabin that are important for binding the DNA substrate; also, key residues such as Asn110 in the mechanism of ADP-ribose transfer to the guanine base were identified. The DNA-binding residues are shared with ScARP from Streptomyces coelicolor but are not conserved with Pierisin-1, suggesting that the modification of guanine bases by ADP-ribosyltransferases is divergent even in the Pierisin family.

2018 ◽  
Author(s):  
Soumitra Pal ◽  
Jan Hoinka ◽  
Teresa M. Przytycka

AbstractUnderstanding the principles of DNA binding by transcription factors (TFs) is of primary importance for studying gene regulation. Recently, several lines of evidence suggested that both DNA sequence and shape contribute to TF binding. However, the question if in the absence of any sequence similarity to the binding motif, DNA shape can still increase probability of binding was yet to be addressed.To address this challenge, we developed Co-SELECT, a computational approach to analyze the results of in vitro HT-SELEX experiments for TF-DNA binding. Specifically, the presence of motif-free sequences in late HT-SELEX rounds and their enrichment in weak binders allowed us to detect evidence for the role of DNA shape features in TF binding.Our approach revealed that, even in the absence of the sequence motif, TFs have propensity to weakly bind to DNA molecules enriched in specific shape features. Surprisingly, we also found that some properties of DNA shape contribute to promiscuous binding of all tested TF families. Strikingly, such promiscuously bound shapes correspond to the most frequent shape formed by the DNA. We propose that this promiscuous binding facilitates diffusing of TFs along the DNA molecule before it is locked in its binding site.


2019 ◽  
Vol 47 (13) ◽  
pp. 6632-6641 ◽  
Author(s):  
Soumitra Pal ◽  
Jan Hoinka ◽  
Teresa M Przytycka

Abstract Understanding the principles of DNA binding by transcription factors (TFs) is of primary importance for studying gene regulation. Recently, several lines of evidence suggested that both DNA sequence and shape contribute to TF binding. However, the following compelling question is yet to be considered: in the absence of any sequence similarity to the binding motif, can DNA shape still increase binding probability? To address this challenge, we developed Co-SELECT, a computational approach to analyze the results of in vitro HT-SELEX experiments for TF–DNA binding. Specifically, Co-SELECT leverages the presence of motif-free sequences in late HT-SELEX rounds and their enrichment in weak binders allows Co-SELECT to detect an evidence for the role of DNA shape features in TF binding. Our approach revealed that, even in the absence of the sequence motif, TFs have propensity to bind to DNA molecules of the shape consistent with the motif specific binding. This provides the first direct evidence that shape features that accompany the preferred sequence motifs also bestow an advantage for weak, sequence non-specific binding.


2013 ◽  
Vol 69 (10) ◽  
pp. 1995-2007 ◽  
Author(s):  
Amer M. Alanazi ◽  
Ellen L. Neidle ◽  
Cory Momany

LysR-type transcriptional regulators (LTTRs) play critical roles in metabolism and constitute the largest family of bacterial regulators. To understand protein–DNA interactions, atomic structures of the DNA-binding domain and linker-helix regions of a prototypical LTTR, BenM, were determined by X-ray crystallography. BenM structures with and without bound DNA reveal a set of highly conserved amino acids that interact directly with DNA bases. At the N-terminal end of the recognition helix (α3) of a winged-helix–turn–helix DNA-binding motif, several residues create hydrophobic pockets (Pro30, Pro31 and Ser33). These pockets interact with the methyl groups of two thymines in the DNA-recognition motif and its complementary strand, T-N11-A. This motif usually includes some dyad symmetry, as exemplified by a sequence that binds two subunits of a BenM tetramer (ATAC-N7-GTAT). Gln29 forms hydrogen bonds to adenine in the first position of the recognition half-site (ATAC). Another hydrophobic pocket defined by Ala28, Pro30 and Pro31 interacts with the methyl group of thymine, complementary to the base at the third position of the half-site. Arg34 interacts with the complementary base of the 3′ position. Arg53, in the wing, provides AT-tract recognition in the minor groove. For DNA recognition, LTTRs use highly conserved interactions between amino acids and nucleotide bases as well as numerous less-conserved secondary interactions.


2018 ◽  
Vol 475 (1) ◽  
pp. 225-245 ◽  
Author(s):  
Bronwyn Lyons ◽  
Miguel R. Lugo ◽  
Stephanie Carlin ◽  
Taylor Lidster ◽  
A. Rod Merrill

Scabin was previously identified as a novel DNA-targeting mono-ADP-ribosyltransferase (mART) toxin from the plant pathogen 87.22 strain of Streptomyces scabies. Scabin is a member of the Pierisin-like subgroup of mART toxins, since it targets DNA. An in-depth characterization of both the glycohydrolase and transferase enzymatic activities of Scabin was conducted. Several protein variants were developed based on an initial Scabin·DNA molecular model. Consequently, three residues were deemed important for DNA-binding and transferase activity. Trp128 and Trp155 are important for binding the DNA substrate and participate in the reaction mechanism, whereas Tyr129 was shown to be important only for DNA binding, but was not involved in the reaction mechanism. Trp128 and Trp155 are both conserved within the Pierisin-like toxins, whereas Tyr129 is a unique substitution within the group. Scabin showed substrate specificity toward double-stranded DNA containing a single-base overhang, as a model for single-stranded nicked DNA. The crystal structure of Scabin bound to NADH — a competitive inhibitor of Scabin — was determined, providing important insights into the active-site structure and Michaelis–Menten complex of the enzyme. Based on these results, a novel DNA-binding motif is proposed for Scabin with substrate and the key residues that may participate in the Scabin·NAD(+) complex are highlighted.


2019 ◽  
Author(s):  
Kentaro Ito ◽  
Yasuto Murayama ◽  
Yumiko Kurokawa ◽  
Shuji Kanamaru ◽  
Yuichi Kokabu ◽  
...  

AbstractDuring homologous recombination, Rad51 forms a nucleoprotein filament on single-stranded DNA to promote DNA strand exchange. This filament binds to double-stranded DNA (dsDNA), searches for homology, and promotes transfer of the complementary strand, producing a new heteroduplex. Strand exchange proceeds via two distinct three-strand intermediates, C1 and C2. C1 contains the intact donor dsDNA whereas C2 contains newly formed heteroduplex DNA. Here, we show that conserved DNA binding motifs, loop 1 (L1) and loop 2 (L2) in site I of Rad51, play distinct roles in this process. L1 is involved in formation of the C1 complex whereas L2 mediates the C1-C2 transition, producing the heteroduplex. Another DNA binding motif, site II, serves as the DNA entry position for initial Rad51 filament formation, as well as for second donor dsDNA incorporation. Our study provides a comprehensive molecular model for the catalytic process of strand exchange mediated by eukaryotic RecA family recombinases.


2021 ◽  
Vol 9 (1) ◽  
pp. 6
Author(s):  
Narendra Pratap Singh ◽  
Bony De Kumar ◽  
Ariel Paulson ◽  
Mark E. Parrish ◽  
Carrie Scott ◽  
...  

Knowledge of the diverse DNA binding specificities of transcription factors is important for understanding their specific regulatory functions in animal development and evolution. We have examined the genome-wide binding properties of the mouse HOXB1 protein in embryonic stem cells differentiated into neural fates. Unexpectedly, only a small number of HOXB1 bound regions (7%) correlate with binding of the known HOX cofactors PBX and MEIS. In contrast, 22% of the HOXB1 binding peaks display co-occupancy with the transcriptional repressor REST. Analyses revealed that co-binding of HOXB1 with PBX correlates with active histone marks and high levels of expression, while co-occupancy with REST correlates with repressive histone marks and repression of the target genes. Analysis of HOXB1 bound regions uncovered enrichment of a novel 15 base pair HOXB1 binding motif HB1RE (HOXB1 response element). In vitro template binding assays showed that HOXB1, PBX1, and MEIS can bind to this motif. In vivo, this motif is sufficient for direct expression of a reporter gene and over-expression of HOXB1 selectively represses this activity. Our analyses suggest that HOXB1 has evolved an association with REST in gene regulation and the novel HB1RE motif contributes to HOXB1 function in part through a repressive role in gene expression.


Membranes ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 148
Author(s):  
Wenkai Wang ◽  
Zhiguo Qu ◽  
Xueliang Wang ◽  
Jianfei Zhang

Minimizing platinum (Pt) loading while reserving high reaction efficiency in the catalyst layer (CL) has been confirmed as one of the key issues in improving the performance and application of proton exchange membrane fuel cells (PEMFCs). To enhance the reaction efficiency of Pt catalyst in CL, the interfacial interactions in the three-phase interface, i.e., carbon, Pt, and ionomer should be first clarified. In this study, a molecular model containing carbon, Pt, and ionomer compositions is built and the radial distribution functions (RDFs), diffusion coefficient, water cluster morphology, and thermal conductivity are investigated after the equilibrium molecular dynamics (MD) and nonequilibrium MD simulations. The results indicate that increasing water content improves water aggregation and cluster interconnection, both of which benefit the transport of oxygen and proton in the CL. The growing amount of ionomer promotes proton transport but generates additional resistance to oxygen. Both the increase of water and ionomer improve the thermal conductivity of the C. The above-mentioned findings are expected to help design catalyst layers with optimized Pt content and enhanced reaction efficiency, and further improve the performance of PEMFCs.


2007 ◽  
Vol 17 (1) ◽  
pp. 68-72 ◽  
Author(s):  
Saori Tsujita ◽  
Mikimasa Tanada ◽  
Tomonobu Kataoka ◽  
Shigeki Sasaki

2016 ◽  
Vol 198 (10) ◽  
pp. 1543-1552 ◽  
Author(s):  
Yanping Yin ◽  
Youyun Yang ◽  
Xuwu Xiang ◽  
Qian Wang ◽  
Zhang-Nv Yang ◽  
...  

ABSTRACTIt is well established that the RpoN-RpoS sigma factor (σ54-σS) cascade plays an essential role in differential gene expression during the enzootic cycle ofBorrelia burgdorferi, the causative agent of Lyme disease. The RpoN-RpoS pathway is activated by the response regulator/σ54-dependent activator (also called bacterial enhancer-binding protein [bEBP]) Rrp2. One unique feature of Rrp2 is that this activator is essential for cell replication, whereas RpoN-RpoS is dispensable for bacterial growth. How Rrp2 controls cell replication, a function that is independent of RpoN-RpoS, remains to be elucidated. In this study, by generating a series of conditionalrrp2mutant strains, we demonstrated that the N-terminal receiver domain of Rrp2 is required for spirochetal growth. Furthermore, a D52A point mutation at the phosphorylation site within the N terminus of Rrp2 abolished cell replication. Mutation of the ATPase motif within the central domain of Rrp2 did not affect spirochetal replication, indicating that phosphorylation-dependent ATPase activity of Rrp2 for σ54activation is not required for cell growth. However, deletion of the C-terminal domain or a 16-amino-acid truncation of the helix-turn-helix (HTH) DNA-binding motif within the C-terminal domain of Rrp2 abolished spirochetal replication. It was shown that constitutive expression ofrpoSis deleterious to borrelial growth. We showed that the essential nature of Rrp2 is not due to an effect onrpoS. These data suggest that phosphorylation-dependent oligomerization and DNA binding of Rrp2 likely function as a repressor, independently of the activation of σ54, controlling an essential step of cell replication inB. burgdorferi.IMPORTANCEBacterial enhancer-binding proteins (bEBPs) are a unique group of transcriptional activators specifically required for σ54-dependent gene transcription. This work demonstrates that theB. burgdorferibEBP, Rrp2, has an additional function that is independent of σ54, that of its essentiality for spirochetal growth, and such a function is dependent on its N-terminal signal domain and C-terminal DNA-binding domain. These findings expand our knowledge on bEBP and provide a foundation to further study the underlying mechanism of this new function of bEBP.


2006 ◽  
Vol 26 (16) ◽  
pp. 5969-5982 ◽  
Author(s):  
Benoit Miotto ◽  
Kevin Struhl

ABSTRACT bZIP DNA-binding domains are targets for viral and cellular proteins that function as transcriptional coactivators. Here, we show that MBF1 and the related Chameau and HBO1 histone acetylases interact with distinct subgroups of bZIP proteins, whereas pX does not discriminate. Selectivity of Chameau and MBF1 for bZIP proteins is mediated by residues in the basic region that lie on the opposite surface from residues that contact DNA. Chameau functions as a specific coactivator for the AP-1 class of bZIP proteins via two arginine residues. A conserved glutamic acid/glutamine in the linker region underlies MBF1 specificity for a subgroup of bZIP factors. Chameau and MBF1 cannot synergistically coactivate transcription due to competitive interactions with the basic region, but either protein can synergistically coactivate with pX. Analysis of Jun derivatives that selectively interact with these coactivators reveals that MBF1 is crucial for the response to oxidative stress, whereas Chameau is important for the response to chemical and osmotic stress. Thus, the bZIP domain mediates selective interactions with coactivators and hence differential regulation of gene expression.


Sign in / Sign up

Export Citation Format

Share Document